CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铌酸锂晶体超精密加工技术研究进展

田业冰 魏成伟 宋晓梅 钱乘

田业冰, 魏成伟, 宋晓梅, 钱乘. 铌酸锂晶体超精密加工技术研究进展[J]. 金刚石与磨料磨具工程, 2024, 44(6): 695-724. doi: 10.13394/j.cnki.jgszz.2024.0011
引用本文: 田业冰, 魏成伟, 宋晓梅, 钱乘. 铌酸锂晶体超精密加工技术研究进展[J]. 金刚石与磨料磨具工程, 2024, 44(6): 695-724. doi: 10.13394/j.cnki.jgszz.2024.0011
TIAN Yebing, WEI Chengwei, SONG Xiaomei, QIAN Cheng. Recent advances in ultra-precision machining of lithium niobate crystals[J]. Diamond & Abrasives Engineering, 2024, 44(6): 695-724. doi: 10.13394/j.cnki.jgszz.2024.0011
Citation: TIAN Yebing, WEI Chengwei, SONG Xiaomei, QIAN Cheng. Recent advances in ultra-precision machining of lithium niobate crystals[J]. Diamond & Abrasives Engineering, 2024, 44(6): 695-724. doi: 10.13394/j.cnki.jgszz.2024.0011

铌酸锂晶体超精密加工技术研究进展

doi: 10.13394/j.cnki.jgszz.2024.0011
基金项目: 国家自然科学基金(51875329);山东省泰山学者工程专项(tsqn201812064);山东省自然科学基金(ZR2023ME112, ZR2017MEE050)。
详细信息
    通讯作者:

    田业冰,男,1979年生,博士、教授、博士研究生导师。主要研究方向:精密/超精密加工技术与装备。E-mail:tianyb@sdut.edu.cn ; tyb79@sina.com

    宋晓梅,女,1980年生,硕士。主要研究方向:精密与特种加工、数字化设计与制造。E-mail:songxm@sdut.edu.cn

  • 中图分类号: TH706

Recent advances in ultra-precision machining of lithium niobate crystals

  • 摘要: 铌酸锂(LiNbO3)晶体光电特性优异,是制造光学调制器、频率倍增器、滤波器等光电子器件的首选材料,在5G无线通信、微纳/集成光子学和人工智能等前沿领域具有巨大应用价值。然而,铌酸锂晶体硬度低、脆性大、各向异性强,大尺寸高品质晶体的制备方法及其高效高质低/无损伤的超精密加工技术是实现铌酸锂晶体器件广泛应用的重要瓶颈。本文主要介绍超精密加工铌酸锂晶体过程中表面/亚表面损伤的产生机理与演变规律,以及减薄、研磨、抛光、超构表面制备等方面的研究进展。分析铌酸锂加工过程中易出现划痕、裂纹和磨料嵌入的原因,以及目前常用铌酸锂晶体超精密加工方法的特点及局限性,提出未来实现大尺寸铌酸锂高效率高表面质量加工的新技术。研究表明:离子切片和磨削能有效实现铌酸锂晶体减薄,研磨和化学机械抛光是常用的铌酸锂晶体表面超精密加工技术,刻蚀、激光烧蚀、聚焦离子束等技术是制备高质量铌酸锂超构表面的微纳加工技术。同时,高剪低压磨削、磁性剪切增稠抛光等新技术在实现铌酸锂晶体表面高效高质加工方面具有极大潜力,但铌酸锂晶体材料去除机理、弹-塑-脆加工临界条件和表面质量控制等问题还亟待系统研究。

     

  • 图  1  铌酸锂晶体的应用[1-3]

    Figure  1.  Applications of lithium niobate crystals[1-3]

    图  2  铌酸锂晶体结构示意图[6]

    Figure  2.  Schematic diagram of lithium niobate crystal structure[6]

    图  3  铌酸锂晶体中铌和锂的位置[10]

    Figure  3.  Location of niobium and lithium in lithium niobate crystal[10]

    图  4  铌酸锂晶体在8000 μN载荷下形成的压痕[12]

    Figure  4.  Indentation of lithium niobate under a load of 8000 μN[12]

    图  5  铌酸锂晶体不同切向的载荷-位移数据及残余压痕[13]

    Figure  5.  Load-displacement data and residual impression after unloading[13]

    图  6  球形压痕工具(R=4.5 μm)下压痕深度为2 μm时铌酸锂表面代表性SEM图[15]

    Figure  6.  Representative SEM images after spherical indentation(R = 4.5 μm) on lithium niobate with a depth of 2 μm [15]

    图  7  LN128和LN0的代表性断裂模式[16]

    Figure  7.  Representative fracture patterns of LN128和LN0[16]

    图  8  高载荷作用下铌酸锂表面[17]

    Figure  8.  Lithium niobate surfaces under high loads[17]

    图  9  铌酸锂表面划痕图[18]

    Figure  9.  Surface scratches of lithium niobate[18]

    图  10  断裂后铌酸锂样品示意图[19]

    Figure  10.  Schematic diagram of fractured lithium niobate sample[19]

    图  11  铌酸锂晶体截面扫描电镜图[19]

    Figure  11.  Cross-section SEM image of lithium niobate crystal[19]

    图  12  3.3 J/cm2、512脉冲烧蚀后X切铌酸锂的表面形貌[22]

    Figure  12.  X-cut lithium niobate surface after ablation of 3.3 J/cm2, 512 pulses[22]

    图  13  不同离子速度和电子能量下30 MeV 氯离子和氩离子辐照试样透射电镜图[24]

    Figure  13.  TEM images of lithium niobate samples irradiated with 30 MeV Cl ion and Ar ion with different ion velocities and electronic energy losses[24]

    图  14  不同切削方向的凹槽[26]

    Figure  14.  Notch images for different cutting directions[26]

    图  15  塑性和脆性加工铌酸锂表面形貌图[25]

    Figure  15.  Topography of ductile and brittle mode machined lithium niobate surface[25]

    图  16  铌酸锂离子切片典型流程[28]

    Figure  16.  Typical process for lithium niobate ion-cut[28]

    图  17  铌酸锂薄膜制备工艺[29]

    Figure  17.  Fabrication process of lithium niobate thin film[29]

    图  18  铌酸锂键合界面透射电镜图[29]

    Figure  18.  TEM images of LiNbO3 bonding interface[29]

    图  19  铌酸锂/硅杂化晶圆的制备工艺流程[30]

    Figure  19.  Fabrication processes of LiNbO3/Si hybrid wafers[30]

    图  20  原子力显微镜图[32]

    Figure  20.  AFM images[32]

    图  21  截面扫描电镜图[32]

    Figure  21.  Cross-section SEM images[32]

    图  22  集成在Si上的铌酸锂薄膜扫描电镜图[33]

    Figure  22.  SEM image of LiNbO3 single-crystal thin film integrated on Si[33]

    图  23  卧式减薄磨削示意图[34]

    Figure  23.  Schematic diagram of horizontal thinning via grinding[34]

    图  24  #1000杯型砂轮磨削后铌酸锂晶片不同位置的表面形貌[34]

    Figure  24.  Surface morphology of lithium niobate wafers at different locations after grinding with #1000 cup wheel[34]

    图  25  不同温度磨削后的铌酸锂晶体表面形貌图[35]

    Figure  25.  Surface morphology of lithium niobate crystals after grinding at different temperatures[35]

    图  26  外置正电场的铌酸锂晶体表面形貌图[35]

    Figure  26.  Surface morphology of lithium niobate crystals with applied positive electric field[35]

    图  27  外置负电场的铌酸锂晶体表面形貌图[35]

    Figure  27.  Surface morphology of lithium niobate crystals with applied negative electric field[35]

    图  28  不同磨削温度磨削后的铌酸锂晶片表面形貌图[37]

    Figure  28.  Surface morphology of lithium niobate crystals after grinding at different temperatures[37]

    图  29  不同电场强度磨削后的铌酸锂晶片表面形貌图[37]

    Figure  29.  Surface morphology of lithium niobate crystals after grinding at different electric field strengths[37]

    图  30  不同载荷研磨后的铌酸锂表面形貌[17]

    Figure  30.  Surface morphology of lithium niobate after lapping under different loads[17]

    图  31  不同粒径磨料研磨后铌酸锂的损伤层[39]

    Figure  31.  Deformed layer of lithium niobate after lapping at different abrasive grain sizes[39]

    图  32  游离磨料和固结磨料研磨后铌酸锂表面形貌(W28)[40]

    Figure  32.  Surface morphology of lithium niobate after lapping with loose and fixed abrasives (W28)[40]

    图  33  部分试样表面微观结构[41]

    Figure  33.  Surface morphology of some lapped samples[41]

    图  34  游离磨料和固结磨料研磨后铌酸锂晶体的表面形貌[42]

    Figure  34.  Surface morphology of lithium niobate after lapping with fixed and loose abrasives[42]

    图  35  不同基体研磨后铌酸锂的表面形貌[43]

    Figure  35.  Surface morphology of lithium niobate after lapping using different matrices[43]

    图  36  2种不同磨料形式研磨后铌酸锂的表面形貌[43]

    Figure  36.  Surface morphology of lithium niobate after lapping with two types of abrasives[43]

    图  37  X切和Z切铌酸锂研磨后的表面粗糙度和表面形貌[19]

    Figure  37.  Surface roughness and surface morphology of X-cut and Z-cut lithium niobate after grinding[19]

    图  38  不同pH值抛光后铌酸锂晶体的表面形貌[55]

    Figure  38.  Surface morphology of lithium niobate crystals after polishing at different pH values[55]

    图  39  化学机械抛光过程中的铌酸锂表面形貌[56]

    Figure  39.  Surface morphology of lithium niobate during chemical mechanical polishing[56]

    图  40  化学机械抛光前后铌酸锂晶体的表面形貌图[57]

    Figure  40.  Surface morphology of lithium niobate crystals before and after chemical mechanical polishing[57]

    图  41  超声波精细雾化化学机械抛光工作原理图[58]

    Figure  41.  Operating principle of ultrasonic fine atomization chemical mechanical polishing[58]

    图  42  刻蚀结构的扫描电镜图[64]

    Figure  42.  SEM images of etched microstructures[64]

    图  43  不同剂量离子束刻蚀后的铌酸锂表面[66]

    Figure  43.  Lithium niobate surface after ion beam etching with different doses[66]

    图  44  无磨料抛光装置示意图[68]

    Figure  44.  Device schematic diagram of non-abrasive polishing [68]

    图  45  抛光前后铌酸锂表面形貌图[68]

    Figure  45.  Surface morphology of lithium niobate before and after polishing[68]

    图  46  抛光后铌酸锂的表面形貌[69]

    Figure  46.  Surface morphology of polished lithium niobate[69]

    图  47  新型抛光液性能验证的案例设计与实验结果[69]

    Figure  47.  Case design and experimental results of performance verification of new polishing solution69]

    图  48  选定参数加工后的工件形貌[70]

    Figure  48.  Morphology of the workpiece with selected polishing parameters[70]

    图  49  表面形貌的扫描电镜图以及对应位置的截面透射电镜图[71]

    Figure  49.  SEM images of surface topography and cross-sectional TEM images of corresponding positions[71]

    图  50  自适应剪切梯度增稠抛光前后的表面完整性[71]

    Figure  50.  Surface integrity before and after adaptive shearing-gradient thickening polishing[71]

    图  51  剪切增稠化学抛光过程中铌酸锂表面形貌和表面粗糙度变化[72]

    Figure  51.  Evolution of surface topography and surface roughness before and after shear thickening-chemical polishing[72]

    图  52  剪切增稠化学抛光过程中铌酸锂表面完整性分析[72]

    Figure  52.  Surface integrity analyzed during shear thickening-chemical polishing[72]

    图  53  高剪低压磨削原理图[74]

    Figure  53.  Microscopic diagram of high-shear and low-pressure grinding principle[74]

    图  54  高剪低压磨削前后铌酸锂晶体的宏观对比图

    Figure  54.  Macroscopic comparison of lithium niobate crystals before and after high-shear and low-pressure grinding

    图  55  磁性剪切增稠抛光原理[79]

    Figure  55.  Magnetorheological shear thickening polishing[79]

    图  56  磁性剪切增稠抛光前后铌酸锂表面三维形貌图

    Figure  56.  Three-dimensional morphology of lithium niobate surface before and after magnetorheological shear thickening polishing

    表  1  铌酸锂晶体的基本物理化学参数(20 ℃)[11]

    Table  1.   Basic physical and chemical properties of lithium niobate crystals (20 °C) [11]

    基本性质实验数值
    晶体密度 ρ / (g·cm−34.612
    莫氏硬度 Hm5
    熔点 Tm / ℃1260
    居里温度 Tc / ℃1210
    菱形晶胞参数 al / Å5.4920
    菱形晶胞参数 α155°53′
    六角晶胞参数 a2 / Å5.14829 ± 0.00002
    六角晶胞参数 c2 / Å13.86310 ± 0.00004
    菱形晶胞分子数 Nl2
    六角晶胞分子数 N26
    a轴热膨胀系数 λa / ℃-116.7 × 10−6
    c轴热膨胀系数 λc / ℃-12.0 × 10−6
    介电常数εs11=44, εt11=84, εs33=29, εt33=30
    折射率 n (632.8 nm)no=2.286, ne=2.202
    25 ℃水溶解度 S / (mol·L−1)2.8 × 10−4
    分解热 ΔH / ( J·mol−1)25941.42
    下载: 导出CSV

    表  2  铌酸锂晶体的系列化学机械抛光实验

    Table  2.   A series of chemical mechanical polishing experiments on lithium niobate crystals

    序号 磨料 粒径
    d / nm
    pH 载荷
    F / kPa
    转速
    v / (r·min−1)
    流量
    q / (mL·min−1)
    时间
    t / min
    效果
    1[46] SiO2 25 9.5 6.5 100 200 无划痕和缺陷
    2[47] SiO2 20~40 9.5~10 15 10 360 Ra 0.387 nm
    面型误差<4 μm
    3[48] SiO2 50 9.5~10 170 40 3 60 Ra 0.32 nm,表面平整光滑
    4[49] SiO2 11.26 140 60 120 Ra 0.21 nm
    5[50] SiO2 140 60 120 300 nm/min
    Ra 0.21 nm
    6[51] SiO2 50 9.5~10 17 40 3 60 Ra 0.20 nm
    7[52] 10.8 90 50 180 Ra 1.0 nm
    8[53] SiO2 20 11 140 60 180 350 nm/min
    9[54] SiO2 40 9.0~11.5 60 60 50 5 Ra 0.38 nm
    10[55] 10 160 60 3000 Ra 0.196 nm
    下载: 导出CSV
  • [1] YAN C L, ZHAO S, WANG S Q, et al. Proton exchange thin film lithium niobate semi-nonlinear waveguides for highly efficient tunable second harmonic generation [J]. Optics & Laser Technology,2024,170:110274. doi: 10.1016/j.optlastec.2023.110274
    [2] MANDAL S, ARTS K, MORGAN D J, et al. Zeta potential and nanodiamond self assembly assisted diamond growth on lithium niobate and lithium tantalate single crystal [J]. Carbon,2023,212:118160. doi: 10.1016/j.carbon.2023.118160
    [3] ZHANG L Y, GENG W P, CHEN X, et al. Enhancing the thermal stability of switched domains in lithium niobate single-crystal thin films [J]. Ceramics International,2020,46(7):9192-9197. doi: 10.1016/j.ceramint.2019.12.171
    [4] 黄水泉, 高尚, 黄传真, 等. 脆性材料磨粒加工的纳米尺度去除机理 [J]. 金刚石与磨料磨具工程,2022,42(3):257-267, 384. doi: 10.13394/j.cnki.jgszz.2021.3009

    HUANG Shuiquan, GAO Shang, HUANG Chuanzhen, et al. Nanoscale removal mechanisms in abrasive machining of brittle solids [J]. Diamond & Abrasives Engineering,2022,42(3):257-267, 384. doi: 10.13394/j.cnki.jgszz.2021.3009
    [5] 高尚, 李洪钢, 康仁科, 等. 新一代半导体材料氧化镓单晶的制备方法及其超精密加工技术研究进展 [J]. 机械工程学报,2021,57(9):213-232. doi: 10.3901/JME.2021.09.213

    GAO Shang, LI Honggang, KANG Renke, et al. Recent advance in preparation and ultra-precision machining of new generation semiconductor material of β-Ga2O3 single crystals [J]. Journal of Mechanical Engineering,2021,57(9):213-232. doi: 10.3901/JME.2021.09.213
    [6] LIN S P, XIONG C W, MA D C, et al. Persistent luminescence found in Mg2 + and Pr3 + Co-doped LiNbO3 single crystal [J]. Journal of Materials Chemistry C,2018,6(37):10067-10072. doi: 10.1039/C8TC03783C
    [7] VOSKRESENSKII V M, STARODUB O R, SIDOROV N V, et al. Investigation of the cluster formation in lithium niobate crystals by computer modeling method [J]. Crystallography Reports,2017,62(2):205-209. doi: 10.1134/S1063774517020316
    [8] KONG Y F, BO F, WANG W W, et al. Recent progress in lithium niobate: Optical damage, defect simulation, and on‐chip devices [J]. Advanced Materials,2020,32(3):e1806452. doi: 10.1002/adma.201806452
    [9] SCHMIDT F, KOZUB A L, BIKTAGIROV T, et al. Free and defect-bound (bi) polarons in LiNbO3: Atomic structure and spectroscopic signatures from ab initio calculations [J]. Physical Review Research,2020,2(4):043002. doi: 10.1103/PhysRevResearch.2.043002
    [10] SÁNCHEZ-DENA O, FIERRO-RUIZ C D, VILLALOBOS-MENDOZA S D, et al. Lithium niobate single crystals and powders reviewed: Part I [J]. Crystals,2020,10(11):973. doi: 10.3390/cryst10110973
    [11] PROKHOROV A M, KUZʹMINOV I, PYANKOVA T M, et al. Physics and chemistry of crystalline lithium niobate [M]. Bristol: IOP Publishing Ltd., Adam Hilger, 1990.
    [12] BHAGAVAT S, KAO I. Nanoindentation of lithium niobate: Hardness anisotropy and pop-in phenomenon [J]. Materials Science and Engineering: A,2005,393(1/2):327-331. doi: 10.1016/j.msea.2004.11.027
    [13] ZHANG Z Y, YANG S, XU C G, et al. Deformation and stress at pop-in of lithium niobate induced by nanoindentation [J]. Scripta Materialia,2014,77:56-59. doi: 10.1016/j.scriptamat.2014.01.018
    [14] WANG H C, ZHANG Y, XIANG D, et al. Growth and mechanical properties of near-stoichiometric LiNbO3 crystal [J]. Optik,2018,164:385-389. doi: 10.1016/j.ijleo.2018.03.011
    [15] GRUBER M, LEITNER A, KIENER D, et al. Incipient plasticity and surface damage in LiTaO3 and LiNbO3 single crystals [J]. Materials & Design,2018,153(5):221-231. doi: 10.1016/j.matdes.2018.04.082
    [16] GRUBER M, LEITNER A, KIENER D, et al. Effect of crystal orientation on the hardness and strength of piezoelectric LiNbO3 substrates for microelectronic applications [J]. Materials & Design,2022,213:110306. doi: 10.1016/j.matdes.2021.110306
    [17] ZHENG H, WEN D H, KONG F Z, et al. Research on critical load of lithium niobate crystal lapping [J]. Processes,2022,10(5):912. doi: 10.3390/pr10050912
    [18] ZHU N N, CHEN J P, ZHOU P, et al. Effect of the anisotropy mechanical properties on LN crystals fixed-abrasive lapping [J]. Materials,2020,13(19):4455. doi: 10.3390/ma13194455
    [19] SOSUNOV A V, VOLYNTSEV A B, TSIBERKIN K B, et al. Features of structure and mechanical properties LiNbO3 [J]. Ferroelectrics,2017,506(1):24-31. doi: 10.1080/00150193.2017.1281686
    [20] SCHMIDT E, STEINBACH T, WESCH W. Ion-beam-induced thin film stress in lithium niobate [J]. Journal of Physics D: Applied Physics,2014,47(26):265302. doi: 10.1088/0022-3727/47/26/265302
    [21] ZVEREV G M, LEVCHUK E A, PASHKOV V A, et al. Laser-radiation-induced damage to the surface of lithium niobate and tantalate single crystals [J]. Soviet Journal of Quantum Electronics,1972,2(2):167-169. doi: 10.1070/QE1972v002n02ABEH004409
    [22] CHONG H W, MITCHELL A, HAYES J P, et al. Investigation of KrF excimer laser ablation and induced surface damage on lithium niobate [J]. Applied Surface Science,2002,201(1/2/3/4):196-203. doi: 10.1016/S0169-4332(02)00904-2
    [23] LIU P, ZHANG Y, XUE H, et al. A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate [J]. Acta Materialia,2016,105:429-437. doi: 10.1016/j.actamat.2015.12.048
    [24] HAN X Q, LIU C, ZHANG M, et al. Thermal spike responses and structure evolutions in lithium niobate on insulator (LNOI) under swift ion irradiation [J]. Crystals,2022,12(7):943. doi: 10.3390/cryst12070943
    [25] HUO D H, CHOONG Z J, SHI Y L, et al. Diamond micro-milling of lithium niobate for sensing applications [J]. Journal of Micromechanics and Microengineering,2016,26(9):095005. doi: 10.1088/0960-1317/26/9/095005
    [26] SHIZUKA H, OKUDA K, NUNOBIKI M, et al. A study on the ductile mode cutting of lithium niobate [J]. Advanced Materials Research,2010(126/127/128):246-251. doi: 10.4028/www.scientific.net/AMR.126-128.246
    [27] JIA Y C, WANG L, CHEN F. Ion-cut lithium niobate on insulator technology: Recent advances and perspectives [J]. Applied Physics Reviews,2021,8(1):011307. doi: 10.1063/5.0037771
    [28] POBERAJ G, HU H, SOHLER W, et al. Lithium niobate on insulator (LNOI) for micro‐photonic devices [J]. Laser &Photonics Reviews,2012,6(4):488-503. doi: 10.1002/lpor.201100035
    [29] LI Q Y, ZHANG H H, ZHU H B, et al. Characterizations of single-crystal lithium niobate thin films [J]. Crystals,2022,12(5):667. doi: 10.3390/cryst12050667
    [30] WU C C, HORNG R H, WUU D S, et al. Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing [J]. Japanese Journal of Applied Physics,2006,45(4):3822-3827. doi: 10.1143/JJAP.45.3822
    [31] XUE G, GENG W P, FU W X, et al. Integrated fabrication and ferroelectric domain adjustment of lithium niobate single crystal films based on silicon substrate [J]. Materials & Design,2022,215:110447. doi: 10.1016/j.matdes.2022.110447
    [32] BAI X Y, SHUAI Y, GONG C G, et al. Surface modifications of crystal-ion-sliced LiNbO3 thin films by low energy ion irradiations [J]. Applied Surface Science,2018,434:669-673. doi: 10.1016/j.apsusc.2017.10.184
    [33] GENG W P, YANG X Y, XUE G, et al. Integration technology for wafer-level LiNbO3 single-crystal thin film on silicon by polyimide adhesive bonding and chemical mechanical polishing [J]. Nanomaterials,2021,11(10):2554. doi: 10.3390/nano11102554
    [34] 胡天明, 孔凡志, 贡燕, 等. 软脆铌酸锂晶体磨削的实验仿真研究 [J]. 机电工程,2016,33(9):1071-1075. doi: 10.3969/j.issn.1001-4551.2016.09.007

    HU Tianming, KONG Fanzhi, GONG Yan, et al. Simulation and experimental of grinding soft-brittle lithium niobate crystals [J]. Journal of Mechanical & Electrical Engineering Magazine,2016,33(9):1071-1075. doi: 10.3969/j.issn.1001-4551.2016.09.007
    [35] 贡燕. 外场对铌酸锂磨削加工的作用研究[D]. 杭州: 浙江工业大学, 2017.

    GONG Yan. The effects of multiphysics fields on grindingprocess of soft-brittle lithium niobate crystals [D]. Hangzhou: Zhejiang University of Technology, 2017.
    [36] 贡燕, 胡天明, 张丽慧, 等. 温度对铌酸锂晶片磨削减薄的影响 [J]. 表面技术,2017,46(7):233-239. doi: 10.16490/j.cnki.issn.1001-3660.2017.07.038

    GONG Yan, HU Tianming, ZHANG Lihui, et al. Effects of temperature on grinding and thinning of soft-brittle lithium niobate crystals [J]. Surface Technology,2017,46(7):233-239. doi: 10.16490/j.cnki.issn.1001-3660.2017.07.038
    [37] 王晓娟. 外场作用下铌酸锂晶体Y-Cut表面的多晶化研究[D]. 杭州: 浙江工业大学, 2019.

    WANG Xiaojuan. Study on the polycrystallization of Y-Cut surface of lithium niobate crystal under external field [D]. Hangzhou: Zhejiang University of Technology, 2019.
    [38] 李清连, 孙军, 吴婧, 等. 铌酸锂晶体的研磨损伤层研究 [J]. 人工晶体学报,2019,48(5):883-888. doi: 10.3969/j.issn.1000-985X.2019.05.019

    LI Qinglian, SUN Jun, WU Jing, et al. Damage layer of lithium niobate crystals after grinding [J]. Journal of Synthetic Crystals,2019,48(5):883-888. doi: 10.3969/j.issn.1000-985X.2019.05.019
    [39] MURATOV K R, ABLYAZ T R, GASHEV E A, et al. Study of lapping and polishing performance on lithium niobate single crystals [J]. Materials,2021,14(17):4968. doi: 10.3390/ma14174968
    [40] 朱楠楠, 朱永伟, 李军, 等. 铌酸锂晶体的研磨亚表面损伤深度 [J]. 光学精密工程,2015,23(12):3387-3394. doi: 10.3788/OPE.20152312.3387

    ZHU Nannan, ZHU Yongwei, LI Jun, et al. Subsurface damage depth of lithium niobate crystal in lapping [J]. Optics and Precision Engineering,2015,23(12):3387-3394. doi: 10.3788/OPE.20152312.3387
    [41] ZHU N N, WANG H J, HU D C, et al. Research of subsurface damage depth of lithium niobate crystal by fixed-abrasive lapping [J]. Integrated Ferroelectrics,2020,209(1):181-187. doi: 10.1080/10584587.2020.1728828
    [42] ZHU N N, ZHENG F Z, ZHU Y W, et al. Research of abrasive embedment-free lapping on soft-brittle lithium niobate wafer [J]. The International Journal of Advanced Manufacturing Technology,2016,87(5):1951-1956. doi: 10.1007/s00170-016-8582-8
    [43] ZHU N N, ZHAO S L, ZHANG S B, et al. Machining stability research of soft-brittle crystals lapping by fixed-abrasive pad [J]. Integrated Ferroelectrics,2022,229(1):45-53. doi: 10.1080/10584587.2022.2074222
    [44] 李攀, 白满社, 邢云云, 等. LiNbO3芯片的无损边缘抛光实验 [J]. 应用光学,2014,35(6):1069-1074. doi: 10.5768/JAO201435.0605004

    LI Pan, BAI Manshe, XING Yunyun, et al. Experiment on defect-free edge polishing of LiNbO3 chips [J]. Journal of Applied Optics,2014,35(6):1069-1074. doi: 10.5768/JAO201435.0605004
    [45] 徐嘉慧, 康仁科, 董志刚, 等. 硅片化学机械抛光技术的研究进展 [J]. 金刚石与磨料磨具工程,2020,40(4):24-33. doi: 10.13394/j.cnki.jgszz.2020.4.0004

    XU Jiahui, KANG Renke, DONG Zhigang, et al. Review on chemical mechanical polishing of silicon wafers [J]. Diamond & Abrasives Engineering,2020,40(4):24-33. doi: 10.13394/j.cnki.jgszz.2020.4.0004
    [46] 邢彤, 袁巨龙, 赵文宏, 等. 铌酸锂晶片的化学机械抛光质量研究 [J]. 机械工程师,2003(7):19-21. doi: 10.3969/j.issn.1002-2333.2003.01.007

    XING Tong, YUAN Julong, ZHAO Wenhong, et al. Study on the chemo-mechanical polishing quality of LiNbO3 cubic flake [J]. Mechanical Engineer,2003(7):19-21. doi: 10.3969/j.issn.1002-2333.2003.01.007
    [47] 王占银, 孔勇发, 陈绍林, 等. 大直径铌酸锂晶片的化学机械抛光研究 [J]. 人工晶体学报,2006,35(1):99-103. doi: 10.3969/j.issn.1000-985X.2006.01.022

    WANG Zhanyin, KONG Yongfa, CHEN Shaolin, et al. Study on the chemical mechanical polishing of large diameter lithium niobate wafer [J]. Journal of Synthetic Crystals,2006,35(1):99-103. doi: 10.3969/j.issn.1000-985X.2006.01.022
    [48] 吕凯. 铌酸锂晶体的抛光机理及工艺方法研究[D]. 长春: 长春理工大学, 2007.

    LÜ Kai. Study on polishing mechanismm & technology method of lithium niobate crystal [D]. Changchun: Changchun University of Science and Technology, 2007.
    [49] 武晓玲, 刘玉岭, 王胜利, 等. pH值对铌酸锂晶片抛光速率及抛光表面的影响 [J]. 半导体技术,2007(1):37-39. doi: 10.3969/j.issn.1003-353X.2007.01.009

    WU Xiaoling, LIU Yuling, WANG Shengli, et al. Effect of pH on the polishing velocity and glazed surface of LN wafer [J]. Semiconductor Technology,2007(1):37-39. doi: 10.3969/j.issn.1003-353X.2007.01.009
    [50] WANG S L, LIU Y L, LI Z X. Study on chemical mechanical polishing process of lithium niobate[C]//3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies. Chengdu, China. SPIE, 2007, 6722: 801-804.
    [51] 刘立新, 张学建, 张莹, 等. 铌酸锂晶体的抛光机理及精密加工工艺 [J]. 硅酸盐学报,2008,36(11):1609-1614. doi: 10.3321/j.issn:0454-5648.2008.11.022

    LIU Lixin, ZHANG Xuejian, ZHANG Ying, et al. Polishing mechanism and precision machining technology of lithium niobate crystal [J]. Journal of the Chinese Ceramic Society,2008,36(11):1609-1614. doi: 10.3321/j.issn:0454-5648.2008.11.022
    [52] 郁炜, 吕迅. 基于田口方法的铌酸锂基片CMP工艺研究 [J]. 轻工机械,2009,27(1):95-97. doi: 10.3969/j.issn.1005-2895.2009.01.027

    YU Wei, LV Xun. Study on chemical mechanical polishing of LiNbO3 wafer by taguchi method [J]. Light Industry Machinery,2009,27(1):95-97. doi: 10.3969/j.issn.1005-2895.2009.01.027
    [53] WANG S L, LI Z X, LIU Y L, et al. Study on optimization of process parameters for lithium niobate photoelectric material in CMP [C]//5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies. Dalian, China. SPIE, 2010, 7655: 765532.
    [54] 徐朝阁. 铌酸锂晶体纳米力学及化学机械抛光研究 [D]. 大连: 大连理工大学, 2014.

    XU Chaoge. Nanomechanies and chemical mechanical polishing of lithiumniobate crystals [D]. Dalian: Dalian University of Technology, 2014.
    [55] 杨静, 杨洪星, 韩焕鹏, 等. 铌酸锂晶片抛光的主要物理及化学因素分析 [J]. 材料导报,2017,31(S2):273-276.

    YANG Jing, YANG Hongxing, HAN Huanpeng, et al. Analysis of physical and chemical factors of chemical mechanical polishing about lithium niobate [J]. Materials Reports,2017,31(S2):273-276.
    [56] JEONG S H, KIM Y J, LEE H S, et al. Study on optical properties of lithium niobate using CMP [J]. Transactions of the Korean Society of Mechanical Engineers A,2009,33(3):196-200. doi: 10.3795/KSME-A.2009.33.3.196
    [57] JEONG S, LEE H, CHO H, et al. Effect of additives for higher removal rate in lithium niobate chemical mechanical planarization [J]. Applied Surface Science,2010,256(6):1683-1688. doi: 10.1016/j.apsusc.2009.09.094
    [58] 马驰, 李庆忠, 范晓策. 雾化施液CMP中铌酸锂晶片抛光液优化及抛光效果 [J]. 半导体技术,2020,45(3):213-218. doi: 10.13290/j.cnki.bdtjs.2020.03.007

    MA Chi, LI Qingzhong, YUAN Xiaoce. Polishing slurry optimization and polishing effect of lithium niobate wafer in atomized slurry applied CMP [J]. Semiconductor Technology,2020,45(3):213-218. doi: 10.13290/j.cnki.bdtjs.2020.03.007
    [59] 崔雪晴, 谢冉冉, 刘洪亮, 等. 铌酸锂超构表面: 制备及光子学应用 [J]. 光电工程,2022,49(10):37-52. doi: 10.12086/oee.2022.220093

    CUI Xueqing, XIE Ranran, LIU Hongliang, et al. Lithium niobate metasurfaces: Preparation and photonics applications [J]. Opto-Electronic Engineering,2022,49(10):37-52. doi: 10.12086/oee.2022.220093
    [60] GOODBERLET J G, DUNN B L. Deep-ultraviolet contact photolithography [J]. Microelectronic Engineering,2000,53(1/2/3/4):95-99. doi: 10.1016/S0167-9317(00)00272-0
    [61] PEASE R F W. Electron beam lithography [J]. Contemporary Physics,2006,22(3):265-290. doi: 10.1080/00107518108231531
    [62] VIEU C, CARCENAC F, PÉPIN A, et al. Electron beam lithography: Resolution limits and applications [J]. Applied Surface Science,2000,164(1/2/3/4):111-117. doi: 10.1016/S0169-4332(00)00352-4
    [63] WEIGAND H, VOGLER-NEULING V V, ESCALÉ M R, et al. Enhanced electro-optic modulation in resonant metasurfaces of lithium niobate [J]. ACS Photonics,2021,8(10):3004-3009. doi: 10.1021/acsphotonics.1c00935
    [64] SALGAEVA U O, MUSHINSKY S S, VOLYNCEV A B, et al. Effect of pre-annealing process on the surface roughness of ridge waveguides formed with wet etching of–Z–cut LiNbO3 [J]. Ferroelectrics,2016,496(1):143-148. doi: 10.1080/00150193.2016.1155399
    [65] LIN J T, XU Y X, FANG Z W, et al. Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining [J]. Science China Physics, Mechanics & Astronomy,2015,58(11):114209. doi: 10.1007/s11433-015-5728-x
    [66] QU M N, SHEN Y L, WU L Y, et al. Homogenous and ultra-shallow lithium niobate etching by focused ion beam [J]. Precision Engineering,2020,62:10-15. doi: 10.1016/j.precisioneng.2019.11.001
    [67] MALSHE A, DESHPANDE D, STACH E, et al. Investigation of femtosecond laser-assisted micromachining of lithium niobate [J]. CIRP Annals,2004,53(1):187-190. doi: 10.1016/S0007-8506(07)60675-1
    [68] BUI P V, TOH D, KANAOKA M, et al. Planarization of lithium niobate surface using a thin film catalyst in pure water [J]. EPJ Web of Conferences,2022,266:03006. doi: 10.1051/epjconf/202226603006
    [69] GUO J, SHI H H, TONG Z, et al. A new chemo-mechanical slurry for close-to-atomic scale polishing of LiNbO3 crystal [J]. CIRP Annals,2023,72(1):293-296. doi: 10.1016/j.cirp.2023.04.076
    [70] PAN B, HE Z X, GUO J, et al. Modelling and optimization of surface roughness in chemical mechanical polishing based on DNN-GA [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2023,237(14):3198-3209. doi: 10.1177/09544062221147132
    [71] LI M, KARPUSCHEWSKI B, OHMORI H, et al. Adaptive shearing-gradient thickening polishing (AS-GTP) and subsurface damage inhibition [J]. International Journal of Machine Tools and Manufacture,2021,160:103651. doi: 10.1016/j.ijmachtools.2020.103651
    [72] LI M, LIU M H, RIEMER O, et al. Origin of material removal mechanism in shear thickening-chemical polishing [J]. International Journal of Machine Tools and Manufacture,2021,170:103800. doi: 10.1016/j.ijmachtools.2021.103800
    [73] TANG C, HUANG Z F, TANG L Y, et al. The effect of pH value on shear thickening and chemical compound effect polishing solution [J]. Journal of Physics: Conference Series, 2023,2566(1): 012033. doi: 10.1088/1742-6596/2566/1/012033
    [74] TIAN Y B, LI L G, FAN S, et al. A novel high-shear and low-pressure grinding method using specially developed abrasive tools [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2021,235(1/2):166-172. doi: 10.1177/0954405420949106
    [75] TIAN Y B, LI L G, HAN J G, et al. Development of novel high-shear and low-pressure grinding tool with flexible composite [J]. Materials and Manufacturing Processes,2020,36(4):479-487. doi: 10.1080/10426914.2020.1843673
    [76] TIAN Y B, LI L G, LIU B, et al. Experimental investigation on high-shear and low-pressure grinding process for Inconel718 superalloy [J]. The International Journal of Advanced Manufacturing Technology,2020,107(7/8):3425-3435. doi: 10.1007/s00170-020-05284-z
    [77] WEI C W, TIAN Y B, CHOWDHURY S, et al. Investigation on high-shear and low-pressure grinding characteristics for zirconia ceramics using newly developed flexible abrasive tool [J]. Ceramics International,2023,49(6):8725-8735. doi: 10.1016/j.ceramint.2022.10.265
    [78] LIU B, TIAN Y B, HAN J G, et al. Development of a new high-shear and low-pressure grinding wheel and its grinding characteristics for Inconel718 alloy [J]. Chinese Journal of Aeronautics,2022,35(12):278-286. doi: 10.1016/j.cja.2021.08.013
    [79] 田业冰, 范增华. 磁性剪切增稠超精密光整加工技术[M]. 北京: 科学出版社, 2022.

    TIAN Yebing, FAN Zenghua. Magnetorheological shear thickening ultra-precision finishing technology [M]. Beijing: Science Press, 2022.
    [80] SUN Z G, TIAN Y B, FAN Z H, et al. Experimental investigations on enhanced alternating-magnetic field-assisted finishing of stereolithographic 3D printing zirconia ceramics [J]. Ceramics International,2022,48(24):36609-36619. doi: 10.1016/j.ceramint.2022.08.220
    [81] QIAN C, TIAN Y B, FAN Z H, et al. Investigation on rheological characteristics of magnetorheological shear thickening fluids mixed with micro CBN abrasive particles [J]. Smart Material Structures,2022,31(9):095004. doi: 10.1088/1361-665X/ac7bbd
    [82] FAN Z H, TIAN Y B, ZHOU Q, et al. Enhanced magnetic abrasive finishing of Ti–6Al–4V using shear thickening fluids additives [J]. Precision Engineering,2020,64:300-306. doi: 10.1016/j.precisioneng.2020.05.001
  • 加载中
图(56) / 表(2)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  21
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-12
  • 修回日期:  2024-07-09
  • 录用日期:  2024-07-19
  • 网络出版日期:  2025-01-11
  • 刊出日期:  2024-12-06

目录

    /

    返回文章
    返回