CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温喷雾冷却下骨组织磨削温度和磨削力的实验研究

张丽慧 谢硕 罗明发 王旭东 杨会闯

张丽慧, 谢硕, 罗明发, 王旭东, 杨会闯. 低温喷雾冷却下骨组织磨削温度和磨削力的实验研究[J]. 金刚石与磨料磨具工程, 2024, 44(6): 798-806. doi: 10.13394/j.cnki.jgszz.2023.0238
引用本文: 张丽慧, 谢硕, 罗明发, 王旭东, 杨会闯. 低温喷雾冷却下骨组织磨削温度和磨削力的实验研究[J]. 金刚石与磨料磨具工程, 2024, 44(6): 798-806. doi: 10.13394/j.cnki.jgszz.2023.0238
ZHANG Lihui, XIE Shuo, LUO Mingfa, WANG Xudong, YANG Huichuang. Experimental study on bone grinding temperature and force under low temperature spray cooling[J]. Diamond & Abrasives Engineering, 2024, 44(6): 798-806. doi: 10.13394/j.cnki.jgszz.2023.0238
Citation: ZHANG Lihui, XIE Shuo, LUO Mingfa, WANG Xudong, YANG Huichuang. Experimental study on bone grinding temperature and force under low temperature spray cooling[J]. Diamond & Abrasives Engineering, 2024, 44(6): 798-806. doi: 10.13394/j.cnki.jgszz.2023.0238

低温喷雾冷却下骨组织磨削温度和磨削力的实验研究

doi: 10.13394/j.cnki.jgszz.2023.0238
详细信息
    作者简介:

    张丽慧,女,1987年生,博士、副教授。主要研究方向:生物医学磨削加工。E-mail:lhzhang@usx.edu.cn

  • 中图分类号: TG58; TG74

Experimental study on bone grinding temperature and force under low temperature spray cooling

  • 摘要: 为提高骨磨削手术的安全性,提出采用低温喷雾冷却对骨磨削过程进行热控制。搭建可三维运动的骨磨削实验平台,采用直径为4 mm的医用金刚石球状磨头以20 000 r/min高转速在骨表面磨削加工。 磨具前、后进给方式下磨削力值相近,当磨削深度为0.5 mm时磨削平均功率约为1.75 W。为降低磨削热引起的热损伤影响,将低温生理盐水喷雾(13 ℃,400 mL/h)输送到磨削区,并考察喷雾射流方向和磨头进给方向对磨削温度的共同影响。研究结果表明:低温喷雾冷却能使骨磨削温升低于4.0 ℃,低于神经组织热损伤温升阈值6.0 ℃,但喷雾的射流方向对温度场有较大的影响。当喷嘴位于磨具上方时,有利于向后进给;位于磨具前方时,有利于向前进给;位于磨具侧面时,对进给方向的影响较小。

     

  • 图  1  骨磨削实验装置

    Figure  1.  Experimental setup of bone grinding

    图  2  磨具进给方向与热电偶布置图

    Figure  2.  Feeding direction of grinding tool and thermocouple layout diagram

    图  3  骨磨削实验中喷嘴的布置方式

    Figure  3.  Arrangement of nozzles in bone grinding experiments

    图  4  骨样本正反表面

    Figure  4.  Front and back of bone sample

    图  5  磨削过程中磨具受力示意图

    Figure  5.  Diagram of force on grinding tool during grinding

    图  6  喷嘴置于前方时骨磨削过程的测力结果

    Figure  6.  Force measured result during bone grinding with nozzle in front

    图  7  磨具—工件接触面上磨粒线速度分布示意图

    Figure  7.  Schematic view of tangential velocity of abrasive particles on contact surface between grinding tool and workpiece

    图  8  某一工况下的温度测量结果

    Figure  8.  Temperature measurement result under a certain operating condition

    图  9  不同工况下(#1 ~ #6实验)温升值对比

    Figure  9.  Comparison of temperature rise under different working conditions (experiment #1-#6)

    图  10  向前进给时喷嘴布置方式对温度的影响

    Figure  10.  Effect of nozzle arrangement on temperature with forward feeding direction

    图  11  向后进给时喷嘴布置方式对温度的影响

    Figure  11.  Effect of nozzle arrangement on temperature with backward feeding direction

    图  12  喷嘴(前方)与磨具进给方向的位置关系示意图

    Figure  12.  Schematic diagram of position relationship between nozzle ( in front) and tool feeding direction

    表  1  实验设计方案

    Table  1.   Experimental design

    编号 喷嘴位置 进给方向 其余加工参数
    #1 上方 向前(+Y 进给速度:10 mm/min

    切削深度:0.5 mm

    磨具转速:20 000 r/min

    喷雾流量:400 mL/h

    喷雾温度:13 ℃
    #2 上方 向后(−Y
    #3 前方 向前(+Y
    #4 前方 向后(−Y
    #5 侧面 向前(+Y
    #6 侧面 向后(−Y
    下载: 导出CSV
  • [1] 吴茂忠, 王成勇, 郑李娟, 等. 生物组织磨削加工研究 [J]. 金刚石与磨料磨具工程,2022,42(2):137-149. doi: 10.13394/j.cnki.jgszz.2021.0123

    WU Maozhong, WANG Chengyong, ZHENG Lijuan, et al. Research on grinding of biological tissue [J]. Diamond & Abrasives Engineering,2022,42(2):137-149. doi: 10.13394/j.cnki.jgszz.2021.0123
    [2] 王成勇, 陈志桦, 陈华伟, 等. 生物骨材料切除理论研究综述 [J]. 机械工程学报,2021,57(11):2-32. doi: 10.3901/JME.2021.11.002

    WANG Chengyong, CHEN Zhihua, CHEN Huawei, et al. A review on cutting mechanism for bone material [J]. Journal of Mechanical Engineering,2021,57(11):2-32. doi: 10.3901/JME.2021.11.002
    [3] 朱欢欢, 李厚佳, 张利华, 等. 切入式磨削烧伤仿真预测与控制方法研究 [J]. 金刚石与磨料磨具工程,2019,39(5):44-49. doi: 10.13394/j.cnki.jgszz.2019.5.0009

    ZHU Huanhuan, LI Houjia, ZHANG Lihua, et al. Study on simulation prediction and control method of burns in plunge grinding [J]. Diamond & Abrasives Engineering,2019,39(5):44-49. doi: 10.13394/j.cnki.jgszz.2019.5.0009
    [4] ZHANG L H, TAI B L, ZHANG K B, et al. Thermal model to investigate the temperature in bone grinding for skull base neurosurgery [J]. Medical Engineering & Physics,2012,35(10):1391-1398. doi: 10.1016/j.medengphy.2013.03.023
    [5] MURAT C, SERDAR K, ERKAN B, et al. Investigation of thermal damage in bone drilling: Hybrid processing method and pathological evaluation of existing methods [J]. Journal of the Mechanical Behavior of Biomedical Materials,2022,126:105030. doi: 10.1016/j.jmbbm.2021.105030
    [6] YANG Y Y, YANG M, LI C H, et al. Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant [J]. Frontiers of Mechanical Engineering,2023,18(1):1-16. doi: 10.1007/s11465-022-0717-z
    [7] LIU Y, BELMONT B, WANG Y W, et al. Notched K-wire for low thermal damage bone drilling [J]. Medical Engineering & Physics,2017,45:25-33. doi: 10.1016/j.medengphy.2017.04.001
    [8] PALMISANO A C, TAI B L, BELMONT B, et al. Heat accumulation during sequential cortical bone drilling [J]. Journal of Orthopaedic Research,2016,34:463-470. doi: 10.1002/jor.23044
    [9] PANDEY R K, PANDA S S. Drilling of bone: A comprehensive review [J]. Journal of Orthopaedic Trauma,2013,4(1):15-30 . doi: 10.1016/j.jcot.2013.01.002
    [10] GHOLAMPOUR S, DROESSLER J, FRIM D. The role of operating variables in improving the performance of skull base grinding [J]. Neurosurgical Review,2022,45:2431-2440. doi: 10.1007/s10143-022-01736-0
    [11] GHOLAMPOUR S, HASSANALIDEH HH, GHOLAMPOUR M, et al. Thermal and physical damage in skull base drilling using gas cooling modes: FEM simulation and experimental evaluation [J]. Computer Methods and Programs in Biomedicine,2021(212): 106463. doi: 10.1016/j.cmpb.2021.106463
    [12] YANG M, LI C H, ZHANG Y B, et al. Research on microscale skull grinding temperature field under different cooling conditions [J]. Applied Thermal Engineering,2017,126:525-537. doi: 10.1016/j.applthermaleng.2017.07.183
    [13] YANG M, LI C H, ZHANG Y B, et al. Experimental research on microscale grinding temperature under different nanoparticle jet minimum quantity cooling [J]. Materials and Manufacturing Process,2017,32(6):589-597. doi: 10.1080/10426914.2016.1176198
    [14] YANG M, LI C H, LUO L, et al. Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling [J]. International Communications in Heat and Mass Transfer,2021,125:105317. doi: 10.1016/j.icheatmasstransfer.2021.105317
    [15] 孙建, 钱炜, 丁子珊. 基于FLUENT的微量润滑磨削流场仿真研究 [J]. 机电工程,2021,38(7):865-872. doi: 10.3969/j.issn.1001-4551.2021.07.009

    SUN Jian, QIAN Wei, DING Zishan. Minimal quantities lubricant grinding based on FLUENT flow field simulation [J]. Journal of Mechanical & Electrical Engineering,2021,38(7):865-872. doi: 10.3969/j.issn.1001-4551.2021.07.009
    [16] ENOMOTO T, SHIGETA H, SUGIHARA T, et al. A new surgical grinding wheel for suppressing grinding heat generation in bone resection [J]. CIRP Annals-ManufacturingTechnology,2014,63(1):305-308. doi: 10.1016/j.cirp.2014.03.026
    [17] SASAKI M, MORRIS S, GOTO T, et al. Spray-irrigation system attached to high-speed drills for simultaneous prevention of local heating and preservation of a clear operative field in spinal surgery [J]. Neurologia Medico-chirurgica,2010,50(10):900-904. doi: 10.2176/nmc.50.900
    [18] LI C H, ZHAO H Y, MA H L, et al. Simulation study on effect of cutting parameters and cooling mode on bone-drilling temperature field of superhard drill [J]. International Journal of Advanced Manufacturing Technology,2015,81(9/10/11/12):2027-2038. doi: 10.1007/s00170-015-7259-z
    [19] TAKENAKA S, HOSONO N, MUKAI Y, et al. The use of cooled saline during bone drilling to reduce the incidence of upper-limb palsy after cervical laminoplasty: Clinical article [J]. Journal of Neurosurgery-spine,2013,19(4):420-427. doi: 10.3171/2013.7.SPINE13144
    [20] ZHANG L H, TAI B L, WANG A C, et al . Mist cooling in neurosurgical bone grinding [J]. CIRP Annals- Manufacturing Technology,2013,62(1):367-370. doi: 10.1016/j.cirp.2013.03.125
    [21] DANDA A, KUTTOLAMADOM M A, TAI B L. A mechanistic force model for simulating haptics of hand-held bone burring operations [J]. Medical Engineering and Physics,2017,49: 7-13. doi: 10.1016/j.medengphy.2017.06.041
    [22] SHIH A J, TAI B L, ZHANG L H, et al. Prediction of bone grinding temperature in skull base neurosurgery [J]. CIRP Annals- Manufacturing Technology,2012,61(1):307-310. doi: 10.1016/j.cirp.2012.03.078
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  74
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-10
  • 修回日期:  2024-01-14
  • 录用日期:  2024-03-03
  • 网络出版日期:  2024-10-30
  • 刊出日期:  2024-12-06

目录

    /

    返回文章
    返回