CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石磨粒纳米加工单晶碳化硅非连续表面机理研究

王一凡 唐文智 何艳 高兴军 凡林 宋淑媛

王一凡, 唐文智, 何艳, 高兴军, 凡林, 宋淑媛. 金刚石磨粒纳米加工单晶碳化硅非连续表面机理研究[J]. 金刚石与磨料磨具工程, 2024, 44(1): 92-100. doi: 10.13394/j.cnki.jgszz.2023.0057
引用本文: 王一凡, 唐文智, 何艳, 高兴军, 凡林, 宋淑媛. 金刚石磨粒纳米加工单晶碳化硅非连续表面机理研究[J]. 金刚石与磨料磨具工程, 2024, 44(1): 92-100. doi: 10.13394/j.cnki.jgszz.2023.0057
WANG Yifan, TANG Wenzhi, HE Yan, GAO Xingjun, FAN Lin, SONG Shuyuan. Investigation on mechanism of nano-machining of single-crystal silicon carbide on non-continuous surface with diamond abrasive[J]. Diamond & Abrasives Engineering, 2024, 44(1): 92-100. doi: 10.13394/j.cnki.jgszz.2023.0057
Citation: WANG Yifan, TANG Wenzhi, HE Yan, GAO Xingjun, FAN Lin, SONG Shuyuan. Investigation on mechanism of nano-machining of single-crystal silicon carbide on non-continuous surface with diamond abrasive[J]. Diamond & Abrasives Engineering, 2024, 44(1): 92-100. doi: 10.13394/j.cnki.jgszz.2023.0057

金刚石磨粒纳米加工单晶碳化硅非连续表面机理研究

doi: 10.13394/j.cnki.jgszz.2023.0057
基金项目: 辽宁省博士科研启动基金计划(2022-BS-292);辽宁省教育厅科学技术研究项目(LJKZ0383);辽宁石油化工大学引进人才科研启动基金(2020XJJL-012);国家级大学生创新创业训练计划(202210148023)。
详细信息
    通讯作者:

    何艳,女,1991年生,副教授,主要研究方向:半导体材料的高效加工技术、纳米制造。E-mail:1422017226@qq.com

    高兴军,男,1979年生,副教授,主要研究方向:精密磨削、纳米制造。E-mail:gaoxingjun@lnpu.edu.cn

  • 中图分类号: TQ164;TG58;TG74;TH161

Investigation on mechanism of nano-machining of single-crystal silicon carbide on non-continuous surface with diamond abrasive

  • 摘要: 建立金刚石磨料纳米加工单晶碳化硅衬底的分子动力学模型,从矢量位移、切削力、晶体结构相变及缺陷等方面研究划痕对原子去除过程的影响以及划痕壁面的材料去除机理。结果表明:划痕区域原子的去除方法主要是剪切和挤压。划痕入口区壁面变形为弹性和塑性混合变形,划痕出口区壁面变形主要为塑性变形,增加纳米加工深度能够提高原子的去除量。衬底表面存在的划痕使纳米加工过程中的切向和法向切削力均降低,最大差值分别为300和600 nN,划痕区域原子的缺失是切向力下降的主要原因。磨粒的剪切挤压作用使碳化硅原子的晶体结构发生了非晶转化,产生了大量不具有完整晶格的原子,并且衬底表层的原子与临近的原子成键,形成稳定的结构。衬底温度受影响的区域主要集中在磨粒的下方,并向衬底的深处传递,在2、5和8 Å纳米加工深度下衬底温度之间的差值约为100 K。

     

  • 图  1  金刚石磨粒纳米加工碳化硅非连续表面模型

    Figure  1.  The model of SiC discontinuous surface nano-machining with diamond abrasive particle

    图  2  纳米加工碳化硅衬底过程中划痕的形变

    Figure  2.  The scratch deformation of SiC substrate in nano-machining process

    图  3  不同纳米加工深度下各壁面的平均位移

    Figure  3.  The average displacement of each wall surface at different nano-machining depths

    图  4  碳化硅衬底非连续表面原子的堆积

    Figure  4.  Accumulation of atoms on the non-continuous surface of SiC substrate

    图  5  碳化硅衬底连续表面原子堆积

    Figure  5.  Accumulation of atoms on the continuous surface of SiC substrate

    图  6  划痕1内壁面AB的平均位移

    Figure  6.  The average displacement of inner wall A and B of scratch 1

    图  7  纳米加工深度5 Å下连续表面和非连续表面的切削力

    Figure  7.  Cutting forces on continuous and non-continuous surfaces at a depth of 5 Å

    图  8  不同纳米加工深度下非连续表面的切削力

    Figure  8.  Cutting forces on non-continuous surfaces at different nano-machining depths

    图  9  碳化硅衬底表层原子杂化

    Figure  9.  Hybridization of atoms in the surface layer of SiC substrate

    图  10  碳化硅衬底非晶化原子数量变化

    Figure  10.  Change in the number of amorphous atoms on SiC substrate

    图  11  碳化硅衬底缺陷原子分布

    Figure  11.  The distribution of defective atoms on SiC substrate

    图  12  碳化硅衬底缺陷原子数量

    Figure  12.  The number of defective atoms on SiC substrate

    图  13  碳化硅衬底原子的温度

    Figure  13.  The temperature of SiC substrate atoms

    表  1  纳米加工过程中分子动力学模拟的条件

    Table  1.   The parameters of molecular dynamics simulation in nano-machining process

    参数
    磨粒半径/Å20
    磨粒的原子数5 887
    衬底的尺寸/Å3200 × 100 × 80
    衬底的原子数145 264
    纳米加工的深度/Å2、5、10
    纳米加工的距离/Å200
    时间步长/fs1
    初始温度/K298
    划痕尺寸/Å320 × 100 × 20
    磨粒速度/(m•s-1100
    下载: 导出CSV
  • [1] SHEN J F, CHEN H B, CHEN J P, et al. Mechanistic difference between Si-face and C-face polishing of 4H-SiC substrates in aqueous and non-aqueous slurries [J]. Ceramics International,2023,49(5):7274-7283. doi: 10.1016/j.ceramint.2022.10.193
    [2] 何艳, 苑泽伟, 段振云, 等. 单晶碳化硅晶片高效超精密抛光工艺 [J]. 哈尔滨工业大学学报,2019,51(1):115-121.

    HE Yan, YUAN Zewei, DUAN Zhenyun, et al. High-productively ultraprecise polishing technology of single crystal silicon carbide wafer [J]. Journal of Harbin Institute of Technology,2019,51(1):115-121.
    [3] GAO X J, LI X, HE Y, et al. Investigation on electrical enhanced photocatalysis polishing of single-crystal silicon carbide substrates [J]. International Journal of Precision Engineering and Manufacturing,2022,23(11):1261-1274. doi: 10.1007/s12541-022-00708-0
    [4] TIAN Z, LU J, LUO Q, et al. Chemical reaction on silicon carbide wafer (0001 and 000-1) with water molecules in nanoscale polishing [J]. Applied Surface Science,2023,607:155090. doi: 10.1016/j.apsusc.2022.155090
    [5] TSAI M Y, HOO Z T. Polishing single-crystal silicon carbide with porous structure diamond and graphene-TiO2 slurries [J]. The International Journal of Advanced Manufacturing Technology,2019,105(1-4):1519-1530. doi: 10.1007/s00170-019-04223-x
    [6] DENG H, LIU N, ENDO K, et al. Atomic-scale finishing of carbon face of single crystal SiC by combination of thermal oxidation pretreatment and slurry polishing [J]. Applied Surface Science,2018(434):40-48.
    [7] YUAN Z, HE Y, SUN X, et al. UV-TiO2 photocatalysis-assisted chemical mechanical polishing 4H-SiC wafer [J]. Materials & Manufacturing Processes,2018,33(11):1214-1222.
    [8] HE Y, YUAN Z, TANG M, et al. Mechanism of chemical and mechanical mutual promotion in photocatalysis-assisted chemical mechanical polishing for single-crystal SiC [J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2022,236(24):11464-11478. doi: 10.1177/09544062221117953
    [9] WANG J C, CHI H R, ZHAO Y. Effect of silicon carbide hard particles scratch on the diamond cutting tools groove wear [J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science,2020,234(10):2053-2063. doi: 10.1177/0954406219900199
    [10] HU Z W, CHEN Y, LAI Z Y, et al. Coupling of double grains enforces the grinding process in vibration-assisted scratch: Insights from molecular dynamics [J]. Journal of Materials Processing Technology,2022,304:117551. doi: 10.1016/j.jmatprotec.2022.117551
    [11] FENG R C, YANG S G, SHAO Z H, et al. Atomistic Simulation of Effects of Random Roughness on Nano-cutting Process of y-TiAl Alloy [J]. Rare Metal Materials and Engineering,2022,51(5):1650-1659.
    [12] FENG R C, QIAO H Y, ZHU Z X, et al. Molecular Dynamics Simulations of Single Crystal gamma-TiAl Alloy in Nanometric Cutting Process [J]. Rare Metal Materials and Engineering,2019,48(5):1559-1566.
    [13] WANG G L, FENG Z J, ZHENG Q C, et al. Molecular dynamics simulation of nano-polishing of single crystal silicon on non-continuous surface [J]. Materials Science in Semiconductor Processing,2020(118):105168.
    [14] WANG Y Q, GUO J. Effect of abrasive size on nano abrasive machining for wurtzite GaN single crystal via molecular dynamics study [J]. Materials Science in Semiconductor Processing,2021(121):105439.
    [15] TIAN Z G, CHEN X, XU X P. Molecular dynamics simulation of the material removal in the scratching of 4H-SiC and 6H-SiC substrates [J]. International Journal of Extreme Manufacturing,2020,2(4):45104. doi: 10.1088/2631-7990/abc26c
    [16] LIN W Q, HU Z W, CHEN Y, et al. Comparison of Vibration-Assisted Scratch Characteristics of SiC Polytypes (3C-, 4H-and 6H-SiC) [J]. Micromachines,2022,13(4):640. doi: 10.3390/mi13040640
    [17] CHEN Z H, LUO Q F, LU J, et al. Understanding the Mechanisms of SiC-Water Reaction during Nanoscale Scratching without Chemical Reagents [J]. Micromachines,2022,13(6):930. doi: 10.3390/mi13060930
    [18] WU Z H, ZHANG L C, YANG S Y. Effect of abrasive grain position patterns on the deformation of 6H-silicon carbide subjected to nano-grinding [J]. International Journal of Mechanical Sciences,2021(211):106779.
    [19] 史若彤, 邓子龙, 高兴军, 等. 基于Deform-3D的镍基高温合金残余应力仿真分析 [J]. 辽宁石油化工大学学报,2017,37(4):49-52. doi: 10.3969/j.issn.1672-6952.2017.04.011

    SHI Ruotong, DENG Zilong, GAO Xingjun, et al. Simulation study on residual stress of nickel-based superalloys based on deform-3D [J]. Journal of Liaoning shihua university,2017,37(4):49-52. doi: 10.3969/j.issn.1672-6952.2017.04.011
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  59
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-10
  • 修回日期:  2023-05-17
  • 录用日期:  2023-05-19
  • 刊出日期:  2024-02-20

目录

    /

    返回文章
    返回