CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磨粒振动对碳化硅CMP的微观结构演变和材料去除的影响

唐爱玲 苑泽伟 唐美玲 王颖

唐爱玲, 苑泽伟, 唐美玲, 王颖. 磨粒振动对碳化硅CMP的微观结构演变和材料去除的影响[J]. 金刚石与磨料磨具工程, 2024, 44(1): 109-122. doi: 10.13394/j.cnki.jgszz.2023.0053
引用本文: 唐爱玲, 苑泽伟, 唐美玲, 王颖. 磨粒振动对碳化硅CMP的微观结构演变和材料去除的影响[J]. 金刚石与磨料磨具工程, 2024, 44(1): 109-122. doi: 10.13394/j.cnki.jgszz.2023.0053
TANG Ailing, YUAN Zewei, TANG Meiling, WANG Ying. Effect of abrasive vibration on microstructure evolution and material removal of SiC CMP[J]. Diamond & Abrasives Engineering, 2024, 44(1): 109-122. doi: 10.13394/j.cnki.jgszz.2023.0053
Citation: TANG Ailing, YUAN Zewei, TANG Meiling, WANG Ying. Effect of abrasive vibration on microstructure evolution and material removal of SiC CMP[J]. Diamond & Abrasives Engineering, 2024, 44(1): 109-122. doi: 10.13394/j.cnki.jgszz.2023.0053

磨粒振动对碳化硅CMP的微观结构演变和材料去除的影响

doi: 10.13394/j.cnki.jgszz.2023.0053
详细信息
    通讯作者:

    苑泽伟,男,博士、教授、博士生导师。主要研究方向:特种加工与精密制造技术、难加工材料的高效加工技术以及高端装备关键零/部件制造技术。E-mail:zwyuan@aliyun.com

  • 中图分类号: TG74;TG58;TG175

Effect of abrasive vibration on microstructure evolution and material removal of SiC CMP

  • 摘要: 针对化学机械抛光中磨料易团聚、机械和化学作用不能充分发挥等问题,采用振动辅助的方法进行优化。通过分子动力学模拟,分析磨粒振动的频率、振幅及其压入深度、划切速度对工件表面微观原子迁移的演变规律,揭示振动对材料去除和表面改善的促进机制;并通过振动辅助化学机械抛光工艺试验和表面成分分析,验证振动辅助的抛光效果和去除机制。结果表明:适当增大磨粒的振动频率、振动振幅及其压入深度、划切速度,可有效提高工件表面的原子势能和温度;磨粒振动有利于提高工件表面原子的混乱度,促进碳化硅参与氧化反应,形成氧化层并以机械方式去除;抛光试验和成分分析也证实振动可以提高材料去除率约50.5%,改善表面质量约25.4%。

     

  • 图  1  光催化原理图

    Figure  1.  Photocatalytic schematic diagram

    图  2  压电陶瓷片逆压电效应示意图

    Figure  2.  Schematic diagram of inverse piezoelectric effect of piezoelectric ceramic sheet

    图  3  碳化硅抛光的分子动力学模型

    Figure  3.  Molecular dynamics model of silicon carbide polishing

    图  4  试验装置示意图

    Figure  4.  Schematic diagram of experimental device

    图  5  试验装置图

    Figure  5.  Experimental device diagram

    图  6  碳化硅工件

    Figure  6.  Silicon carbide workpiece

    图  7  磨粒中心原子的划切运动轨迹

    Figure  7.  Scratch trajectory of central atom of abrasive particles

    图  8  划切后形成的非晶层截面图及非晶原子数

    Figure  8.  Cross-sectional view of amorphous layer formed after dicing and number of amorphous atoms

    图  9  划切后工件表面轴侧形貌

    Figure  9.  Axial surface morphology of workpiece after dicing

    图  10  振动对势能和温度的变化曲线

    Figure  10.  Variation curve of vibration to potential energy and temperature

    图  11  不同振动频率下磨粒中心原子的划切运动轨迹及产生的非晶原子数

    Figure  11.  Scratch trajectory of central atom of abrasive particles and number of amorphous atoms produced under different vibration frequencies

    图  12  不同振动频率划切后工件表面形貌俯视图

    Figure  12.  Top view of workpiece surface topography after dicing at different vibration frequencies

    图  13  不同振动频率下势能和温度的变化曲线

    Figure  13.  Variation curves of potential energy and temperature under different vibration frequencies

    图  14  不同振幅划切后的工件表面形貌俯视图

    Figure  14.  Top view of workpiece surface topography after dicing with different amplitudes

    图  15  不同振幅下产生的原子堆积及其数量统计

    Figure  15.  Atomic accumulation under different amplitudes and its quantitative statistics

    图  16  不同振幅划切后非晶层截面及非晶原子数统计

    Figure  16.  Statistics of amorphous layer cross section and amorphous atom number after different amplitude dicing

    图  17  不同振幅划切后的工件截面形貌

    Figure  17.  Cross-sectional morphology of workpiece after dicing with different amplitudes

    图  18  不同振幅下势能、温度、切削力的变化曲线

    Figure  18.  Variation curves of potential energy, temperature and cutting force under different amplitudes

    图  19  不同压入深度划切后的工件截面形貌

    Figure  19.  Cross-sectional morphology of workpiece after cutting with different indentation depths

    图  20  不同压入深度划切后形成的非晶原子数

    Figure  20.  Number of amorphous atoms formed after dicing at different indentation depths

    图  21  不同压入深度下势能和温度的变化曲线

    Figure  21.  Variation curves of potential energy and temperature at different penetration depths

    图  22  不同划切速度下产生的原子堆积及其数量统计

    Figure  22.  Atomic accumulation and its quantitative statistics under different cutting speeds

    图  23  不同划切速度下势能、温度和切削力的变化曲线

    Figure  23.  Variation curves of potential energy, temperature and cutting force at different cutting speeds

    图  24  CMP后的碳化硅表面微观形貌

    Figure  24.  Surface micromorphology of silicon carbide after CMP

    图  25  振动辅助CMP后的碳化硅表面微观形貌

    Figure  25.  Surface micromorphology of SiC after vibration-assisted CMP

    图  26  振动频率对振动辅助CMP效果的影响

    Figure  26.  Influence of vibration frequency on vibration assisted CMP effect

    图  27  振动频率对光催化辅助CMP效果的影响

    Figure  27.  Effect of vibration frequency on photocatalytic assisted CMP effect

    图  28  碳化硅表面不同深度下的XPS全扫描

    Figure  28.  XPS full scanning of SiC at different depths

    图  29  碳化硅表面各原子占比

    Figure  29.  Proportion of atoms on SiC surface

    图  30  初始表面Si 2p高分辨率扫描

    Figure  30.  High resolution scanning of initial surface Si 2p

    图  31  初始表面C 1s高分辨率扫描

    Figure  31.  High resolution scanning of initial surface C1s

    表  1  模拟参数设置

    Table  1.   Simulation parameter setting

    参数类型或取值
    工件材料单晶SiC
    工件尺寸185 Å × 96 Å × 60 Å
    工件原子个数103 680
    磨粒半径 r / Å20
    磨粒原子个数5 894
    势能函数Tersoff
    边界条件p p f
    初始温度 T / K298
    振动频率 f / GHz40,60,80,100
    振幅 B / nm0.4,0.8,1.2,1.6
    压入深度 ap / nm0.3,0.6,0.9,1.2
    划切速度 v / (m·s−1)50,75,100,125
    下载: 导出CSV
  • [1] 王莹. SiC: 为何被称为是新一代功率半导体 [J]. 电子产品世界,2019,26(9):79-82.

    WANG Ying. SiC: Why is it called a new generation of power semiconductor [J]. Electronics World,2019,26(9):79-82.
    [2] 顾瑾栩, 张倩, 卢晓威. 北京第三代半导体产业发展思路的研究 [J]. 集成电路应用,2019,36(5):1-6. doi: 10.19339/j.issn.1674-2583.2019.05.001

    GU Jinxu, ZHANG qian, LU Xiaowei. Research on the development ideas of the third generation semiconductor industry in Beijing [J]. Integrated Circuit Application,2019,36(5):1-6. doi: 10.19339/j.issn.1674-2583.2019.05.001
    [3] 赵婉雨. 聚焦产业关键技术, 把握第三代半导体发展机遇−第三代半导体材料产业技术分析报告 [J]. 高科技与产业化,2019(5):28-40.

    ZHAO Wanyu. Focus on the key technologies of the industry, grasp the development opportunities of the third generation semiconductor-the technical analysis report of the third generation semiconductor material industry [J]. High-tech and industrialization,2019(5):28-40.
    [4] 李娟, 陈秀芳, 马德营, 等. SiC单晶片的超精密加工 [J]. 功能材料,2006,37(1):70-72. doi: 10.3321/j.issn:1001-9731.2006.01.021

    LI Juan, CHEN Xiufang, MA Deying, et al. Ultra-precision machining of SiC single wafer [J]. Functional Materials,2006,37(1):70-72. doi: 10.3321/j.issn:1001-9731.2006.01.021
    [5] 肖强, 李言, 李淑娟. SiC单晶片化学机械抛光超精密加工技术现状与趋势 [J]. 宇航材料工艺,2010,40(1):9-13. doi: 10.3969/j.issn.1007-2330.2010.01.003

    XIAO Qiang, LI Yan, LI Shujuan. Present situation and trend of ultra-precision machining technology of chemical mechanical polishing of SiC single wafer [J]. Aerospace Materials Technology,2010,40(1):9-13. doi: 10.3969/j.issn.1007-2330.2010.01.003
    [6] 韩杰才, 张宇民, 赫晓东. 大尺寸轻型SiC光学反射镜研究进展 [J]. 宇航学报,2001(6):124-132. doi: 10.3321/j.issn:1000-1328.2001.06.021

    HAN Jiecai, ZHANG Yumin, HE Xiaodong. Research progress of large-size light SiC optical mirror [J]. Journal of Aerospace,2001(6):124-132. doi: 10.3321/j.issn:1000-1328.2001.06.021
    [7] 马文礼, 沈忙作. 碳化硅轻型反射镜技术 [J]. 光学精密工程,1999(2):9-13. doi: 10.3321/j.issn:1004-924X.1999.02.002

    MA Wenli, SHEN Mangzuo. Silicon carbide light mirror technology [J]. Optical Precision Engineering,1999(2):9-13. doi: 10.3321/j.issn:1004-924X.1999.02.002
    [8] 毛旭. SiC材料制备工艺研究进展 [J]. 云南大学学报,2002,24(1A):197-202.

    MAO Xu. Research progress in preparation technology of SiC materials [J]. Journal of Yunnan University,2002,24(1A):197-202.
    [9] 耿连福, 高顺喜, 李美岩. 难加工材料的切削加工性研究与实践 [J]. 煤矿机械,2009,30(7):97-99. doi: 10.3969/j.issn.1003-0794.2009.07.045

    GENG Lianfu, GAO Shunxi, LI Meiyan. Research and practice on machinability of difficult-to-machine materials [J]. Coal Mine Machinery,2009,30(7):97-99. doi: 10.3969/j.issn.1003-0794.2009.07.045
    [10] AIDA H, DOI T, TAKEDA H, et al. Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials [J]. Current Applied Physics,2012,12:S41-S46. doi: 10.1016/j.cap.2012.02.016
    [11] XU W H, LU X C, PAN G S, et al. Ultrasonic flexural vibration assisted chemical mechanical polishing for sapphire [J]. Applied Surface Science,2010,256(12):3936-3940. doi: 10.1016/j.apsusc.2010.01.053
    [12] TSAI M Y, YANG W Z. Combined ultrasonic vibration and chemical mechanical polishing of copper substrates [J]. International Journal of Machine Tools & Manufacture,2012,53(1):69-76.
    [13] LIU D F, YAN R M, CHEN T. Material removal model of ultrasonic elliptical vibration-assisted chemical mechanical polishing for hard and brittle materials [J]. International Journal of Advanced Manufacturing Technology,2017,92(1-4):81-99. doi: 10.1007/s00170-017-0081-z
    [14] 石栋. 超声辅助单晶SiC晶片的研磨与化学机械抛光研究 [D]. 长春: 吉林大学, 2020.

    SHI Dong. Study on ultrasonic-assisted grinding and chemical mechanical polishing of single crystal SiC wafer [D]. Changchun: Jilin University, 2020.
    [15] YUAN Z , HE Y , SUN X , et al. UV-TiO2 photocatalysis- assisted chemical mechanical polishing 4H-SiC wafer [J]. Materials and Manufacturing Processes, 2017: 10426914.
    [16] 于保军, 郭桌一, 卢发祥, 等. 紫外光催化振动复合抛光 [J]. 红外与激光工程,2022,51(11):361-367.

    YU Baojun, GUO Zhuoyi, LU Faxiang, et al. UV-catalyzed vibration compound polishing [J]. Infrared and Laser Engineering,2022,51(11):361-367.
    [17] 罗熙淳, 梁迎春, 董申. 单晶硅纳米加工机理的分子动力学研究 [J]. 航空精密制造技术,2000,36(3):1-24. doi: 10.3969/j.issn.1003-5451.2000.03.001

    LUO Xichun, LIANG Yingchun, DONG Shen. Molecular dynamics study on nanoprocessing mechanism of single crystal silicon [J]. Aviation Precision Manufacturing Technology,2000,36(3):1-24. doi: 10.3969/j.issn.1003-5451.2000.03.001
    [18] MONTI S, LI C, CARRAVETTA V. Reactive dynamics simulation of monolayer and multilayer adsorption of glycine on Cu(110) [J]. The Journal of Physical Chemistry C,2013,117(10):5221-5228. doi: 10.1021/jp312828d
    [19] 唐美玲. 光催化辅助拋光碳化硅材料去除机理研究 [D]. 沈阳: 沈阳工业大学, 2020.

    TANG Meiling. Study on the removal mechanism of photocatalytic assisted polishing of silicon carbide materials [D]. Shenyang: Shenyang University of Technology, 2020.
    [20] 李论. 振动辅助单颗磨粒划擦碳化硅晶体的数值仿真研究 [D]. 厦门: 华侨大学, 2019.

    LI Lun. Numerical simulation study on vibration-assisted single abrasive particle scratching silicon carbide crystal [D]. Xiamen: Huaqiao University, 2019.
    [21] 何艳. 光催化辅助抛光碳化硅晶片工艺及机理研究 [D]. 沈阳: 沈阳工业大学, 2019.

    HE Yan. Study on the process and mechanism of photocatalytic assisted polishing of silicon carbide wafer [D]. Shenyang: Shenyang University of Technology, 2019.
    [22] MURAKAMI N, KAWAKAMI S, TSUBOTA T, et al. Dependence of photocatalytic activity on particle size of a shape-controlled anatase titanium(IV) oxide nanocrystal [J]. Journal of Molecular Catalysis A:Chemical,2012,358:106-111. doi: 10.1016/j.molcata.2012.03.003
    [23] ALALM M G, TAWFIK A, OOKAWARA S. Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry waste water: Operational conditions, kinetics, and costs [J]. Journal of Water Process Engineering. 2015, 8: 55-63.
    [24] PARK K H, KIM K T, HONG Y H, et al. Study on effect of ultrasonic vibration in machining of alumina ceramic [J]. Key Engineering Materials,2012,516:311-316. doi: 10.4028/www.scientific.net/KEM.516.311
    [25] 赵明利, 赵波, 高国富. 超精密研抛及超声波研抛技术分析 [J]. 现代机械,2006(6):50-53. doi: 10.3969/j.issn.1002-6886.2006.06.021

    ZHAO Mingli, ZHAO Bo, GAO Guofu. Analysis of ultra-precision polishing and ultrasonic polishing technology [J]. Modern Machinery,2006(6):50-53. doi: 10.3969/j.issn.1002-6886.2006.06.021
    [26] TERSOFF J. New empirical model for the structural properties of silicon [J]. Physical review letters,1986,56(6):632. doi: 10.1103/PhysRevLett.56.632
    [27] TERSOFF J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems [J]. Physical review B,1989,39(8):5566. doi: 10.1103/PhysRevB.39.5566
    [28] 苑泽伟. 利用化学和机械协同作用的CVD金刚石抛光机理与技术 [D]. 大连: 大连理工大学, 2012.

    YUAN Zewei. Mechanism and technology of CVD diamond polishing by chemical and mechanical synergy [D]. Dalian: Dalian University of Technology, 2012.
  • 加载中
图(31) / 表(1)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  66
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-07
  • 修回日期:  2023-04-09
  • 录用日期:  2023-04-17
  • 刊出日期:  2024-02-20

目录

    /

    返回文章
    返回