CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

18CrNiMo7-6钢发射率值标定及外圆磨削温度研究

王栋 赵睿 张志鹏 张银霞 乔瑞勇

王栋, 赵睿, 张志鹏, 张银霞, 乔瑞勇. 18CrNiMo7-6钢发射率值标定及外圆磨削温度研究[J]. 金刚石与磨料磨具工程, 2024, 44(1): 66-72. doi: 10.13394/j.cnki.jgszz.2023.0013
引用本文: 王栋, 赵睿, 张志鹏, 张银霞, 乔瑞勇. 18CrNiMo7-6钢发射率值标定及外圆磨削温度研究[J]. 金刚石与磨料磨具工程, 2024, 44(1): 66-72. doi: 10.13394/j.cnki.jgszz.2023.0013
WANG Dong, ZHAO Rui, ZHANG Zhipeng, ZHANG Yinxia, QIAO Ruiyong. Calibration of emissivity value of 18CrNiMo7-6 steel and study on cylindrical grinding temperature[J]. Diamond & Abrasives Engineering, 2024, 44(1): 66-72. doi: 10.13394/j.cnki.jgszz.2023.0013
Citation: WANG Dong, ZHAO Rui, ZHANG Zhipeng, ZHANG Yinxia, QIAO Ruiyong. Calibration of emissivity value of 18CrNiMo7-6 steel and study on cylindrical grinding temperature[J]. Diamond & Abrasives Engineering, 2024, 44(1): 66-72. doi: 10.13394/j.cnki.jgszz.2023.0013

18CrNiMo7-6钢发射率值标定及外圆磨削温度研究

doi: 10.13394/j.cnki.jgszz.2023.0013
详细信息
    通讯作者:

    王栋,男,1970年生,博士、教授、硕士生导师。主要研究方向:抗疲劳制造技术和精密超精密加工技术。E-mail:wangdong@zzu.edu.cn

  • 中图分类号: TG58

Calibration of emissivity value of 18CrNiMo7-6 steel and study on cylindrical grinding temperature

More Information
    Corresponding author: 王栋,男,1970年生,博士、教授、硕士生导师。主要研究方向:抗疲劳制造技术和精密超精密加工技术。E-mail: wangdong@zzu.edu.cn
  • 摘要: 为研究齿轮钢外圆横向磨削过程中工件温度受加工参数变化的影响,以18CrNiMo7-6齿轮钢作为工件材料,CBN砂轮作为磨具进行试验,使用红外热像仪对磨削过程温度进行检测。提出一种增设气幕装置的热辐射发射率值标定方案,通过气幕生成的高速气流减缓外界空气进入加热炉,防止标定过程中试样被氧化,保证高温条件下标定得到的发射率值的准确度;依据检测结果,分析工件转速${v_{\text{w}}}$、工件每转的磨削深度${f_{\text{a}}}$、砂轮磨粒粒度${d_{\text{g}}}$、砂轮直径${d_{\text{s}}}$和磨削宽度$b$对温度的影响。结果表明:${f_{\text{a}}}$对温度变化影响最显著。通过拟合得到磨削温度与试验参数间的经验公式,其误差为9.27%。将磨削温度的试验测量结果与运用移动热源理论、瑞利分布模型和干式磨削热分配比模型进行理论推导的结果作对比,偏差为8.51%。

     

  • 图  1  标定试验装置

    Figure  1.  Calibration test devices

    图  2  Research IR内热辐射发射率值计算模块

    Figure  2.  Thermal radiation emissivity value calculation module in Research IR

    图  3  热辐射发射率值测量结果

    Figure  3.  Thermal emissivity value measurement results

    图  4  外圆磨削试验设备

    Figure  4.  Cylindrical grinding test equipments

    图  5  加工参数对磨削温度的影响

    Figure  5.  Effect of processing parameters on grinding temperature

    图  6  CBN砂轮显微观察图像

    Figure  6.  Microscopic observation image of CBN grinding wheel

    表  1  砂轮参数

    Table  1.   Grinding wheel parameters

    砂轮
    编号
    磨料
    种类
    砂轮
    外径
    ${d_{\text{s}}}$/ mm
    砂轮
    宽度
    ${b_{\text{s}}}$/ mm
    磨料
    粒度
    ${d_{\text{g}}}$/ μm
    砂轮
    浓度
    c / %
    砂轮ⅠCBN4502212~22100
    砂轮ⅡCBN4502253~63100
    砂轮ⅢCBN4502012~22 100
    砂轮ⅣCBN4502653~63100
    下载: 导出CSV

    表  2  正交试验参数

    Table  2.   Orthogonal test parameters

    试验编号工件转速
    ${n_{\text{w}}}$ / (r·min−1
    工件每转的磨削深度
    ${f_{\text{a} } }$ / (μm·r−1
    砂轮编号
    1300.2
    2300.5
    3300.8
    4301
    5900.2
    6900.5
    7900.8
    8901
    91200.2
    101200.5
    111200.8
    121201
    131800.2
    141800.5
    151800.8
    161801
    下载: 导出CSV

    表  3  外圆磨削试验结果

    Table  3.   Cylindrical grinding test results

    试验编号温度 θr / ℃试验编号温度 θr / ℃
    1107.72 9217.42
    2119.8310328.71
    3171.4011603.23
    4208.8812399.50
    5130.5113216.34
    6367.4414389.17
    7278.6715424.76
    8377.7916743.31
    下载: 导出CSV

    表  4  磨削弧区切入端最高温度结果

    Table  4.   Results of the maximum temperature at the cutting end of grinding arc

    试验
    编号
    测量结果
    ${T_{\text{r}}}$ / ℃
    经验公式
    计算结果
    ${T_{{\text{re}}}}$ / ℃
    经验公
    式误差
    $\left| {\Delta {T_1}} \right|$ / %
    理论计
    算结果
    ${T_{{\text{rl}}}}$ / ℃
    理论结
    果偏差
    $\left| {\Delta {T_2}} \right|$ / %
    1107.7296.1210.7799.847.32
    2119.83115.523.60102.2114.70
    3171.40202.6818.25162.974.92
    4208.88192.148.01197.395.50
    5130.51127.042.66116.5010.73
    6367.44322.2912.29305.4116.88
    7278.67322.1215.59318.2114.19
    8377.79445.7918.00399.505.75
    9217.42198.688.62230.876.19
    10328.71287.1212.65337.102.55
    11603.23508.8815.64564.846.36
    12399.50401.170.42434.618.79
    13216.34209.203.30184.0314.93
    14389.17441.3613.41411.515.74
    15424.76445.614.91466.699.87
    16743.31741.560.24756.521.78
    下载: 导出CSV

    表  5  砂轮磨粒与工件材料物理特性

    Table  5.   Physical characteristics of abrasive particle and workpiece material

    材料特性CBN磨粒18CrNiMo7-6
    杨氏模量 E / GPa720210
    泊松比0.150.30
    密度 ρ / (kg·m−33.450$ \times $1067815
    比热容 c / (J∙kg−1∙K−1)710420
    导热系数 λ / (W∙m−1∙K−1)79.5435.64
    下载: 导出CSV
  • [1] ANDERSON D, WARKENTIN A, BAUER R. Experimental validation of numerical thermal models for dry grinding [J]. Journal of Materials Processing Technology,2007,204(1):269-278. doi: j.jmatprotec.2007.11.080
    [2] 黄新春, 张定华, 姚倡锋, 等. 超高强度钢AerMet100磨削烧伤研究 [J]. 机械工程学报,2015,51(9):184-190. doi: 10.3901/JME.2015.09.184

    HUANG Xinchun, ZHANG Dinghua, YAO Changfeng, et al. Research on the grinding burn of the ultrahigh strength steel AerMet100 [J]. Journal of Mechanical Engineering,2015,51(9):184-190. doi: 10.3901/JME.2015.09.184
    [3] MAHDI M, ZHANG L. The finite element thermal analysis of grinding processes by ADINA [J]. Computers & Structures,1995,56(2-3):313-320.
    [4] LI B Z, ZHU D H, PANG J Z, et al. Quadratic curve heat flux distribution model in the grinding zone [J]. The International Journal of Advanced Manufacturing Technology,2011,54(9/12):931-940. doi: 10.1007/s00170-010-2990-y
    [5] PANG J Z, LI B Z, LIU Y, et al. Rayleigh heat flux distribution model investigation and workpiece temperature prediction in the cylindrical grinding [J]. The International Journal of Advanced Manufacturing Technology,2017,89(9/12):3231-3241. doi: 10.1007/s00170-016-9220-1
    [6] 左振. 硬质合金磨削过程的温度分布及热量分配比例实验研究 [D]. 福州: 福建工程学院, 2022.

    ZUO Zhen. Experimental study on temperature distribution and heat distribution ratio in cemented carbide grinding process [D]. Fuzhou: Fujian University of Technology, 2022.
    [7] 钱宁, 徐九华, 傅玉灿, 等. 面向绿色高效磨削的振荡热管砂轮磨削温度与强化传热分析 [J]. 机械工程学报,2022,58(15):105-120. doi: 10.3901/JME.2022.15.105

    QIAN Ning, XU Jiuhua, FU Yucan, et al. Investigation on grinding temperature and heat transfer performance of oscillating grinding wheel for high-efficient green grinding [J]. Journal of Mechanical Engineering,2022,58(15):105-120. doi: 10.3901/JME.2022.15.105
    [8] XU X P, YU Y Q, HUANG H. Mechanisms of abrasive wear in the grinding of titanium(TC4) and nickel(K417) alloys [J]. Wear,2003,255:1421-1426. doi: 10.1016/S0043-1648(03)00163-7
    [9] 庞静珠. 高速精密外圆磨削热及其监控方法的研究与应用 [D]. 上海: 东华大学, 2015.

    PANG Jingzhu. Research and application on grinding heat and its monitoring methods in high-speed cylindrical precision grinding [D]. Shanghai: Donghua University, 2015.
    [10] 蔡李靖, 周凯来, 沈桂竹, 等. 红外热像仪高精度测温标定技术 [J]. 红外与激光工程,2021,50(10):202-209. doi: 10.3788/IRLA20210043

    CAI Lijing, ZHOU Kailai, SHEN Jiazhu, et al. High-precision temperature measurement and calibration technology of infrared thermal imager [J]. Infrared and Laser Engineering,2021,50(10):202-209. doi: 10.3788/IRLA20210043
    [11] 白梦洁. 隧道中气幕防排烟系统关键参数及控烟效果研究 [D]. 徐州: 中国矿业大学, 2020.

    BAI Mengjie. Key parameters and smoke control effects of air curtain smoke exhaust system in tunnel [D]. Xuzhou: China University of Mining and Technology, 2020.
    [12] 张凤, 何康, 冯世杰, 等. 高超声速风洞M a=5中劈尖试件的红外测温 [J]. 中国测试,2019,45(7):37-41. doi: 10.11857/j.issn.1674-5124.2018020010

    ZHANG Feng, HE Kang, FENG Shijie, et al. Infrared temperature measurement of wedge shape specimen in the hypersonic wind tunnel at M a=5 [J]. China Measurement & test,2019,45(7):37-41. doi: 10.11857/j.issn.1674-5124.2018020010
    [13] 王栋, 马少奇, 赵静雯, 等. 18CrNiMo7-6外圆磨削力对残余应力的影响 [J]. 组合机床与自动化加工技术,2021(11):27-30. doi: 10.13462/j.cnki.mmtamt.2021.11.007

    WANG Dong, MA Shaoqi, ZHAO Jingwen, et al. Effect of grinding force on residual stress in 18CrNiMo7-6 cylindrical grinding [J]. Modular Machine Tool & Automatic Manufacturing Technique,2021(11):27-30. doi: 10.13462/j.cnki.mmtamt.2021.11.007
    [14] 唐进元, 周伟华, 黄于林. 轴向超声振动辅助磨削的磨削力建模 [J]. 机械工程学报,2016,52(15):184-191. doi: 10.3901/JME.2016.15.184

    TANG Jinyuan, ZHOU Weihua, HUANG Yulin. Modeling on grinding force assisted with axial ultrasonic vibration [J]. Journal of Mechanical Engineering,2016,52(15):184-191. doi: 10.3901/JME.2016.15.184
    [15] PANG J Z, WU C J, SHEN Y M, et al. Heat flux distribution and temperature prediction model for dry and wet cylindrical plunge grinding [J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2019,233(10):2047-2060. doi: 10.1177/0954405418815365
    [16] ROWE W B. Thermal analysis of high efficiency deep grinding [J]. International Journal of Machine Tools and Manufacture,2001,41(1):1-19. doi: 10.1016/S0890-6955(00)00074-2
    [17] ROWE W B, BLACK S C E, MILLIS B, et al. Grinding temperatures and energy partitioning [J]. Proceedings of The Royal Society A,1997,453(1960):1083-1104. doi: 10.1098/rspa.1997.0061
    [18] JIN T, STEPHENSON D J. Analysis of grinding chip temperature and energy partitioning in high -efficiency deep grinding [J]. Proceedings of the Institution of Mechanical Engineerings, Part B:Journal of Engineers Manufacture,2005,220(5):615-625. doi: 10.1243/09544054JEM389
    [19] ROWE W B, MORGAN M N, QI H S, et al. The effect of deformation on the contact area in grinding [J]. CIRP Annals,1993,42(1):409-412. doi: 10.1016/S0007-8506(07)62473-1
    [20] QI H S, MILLIS B, ROWE W B. An analysis of real contact length in abrasive machining processes using contact mechanics [J]. Wear,1994,176(1):137-141. doi: 10.1016/0043-1648(94)90207-0
    [21] 张锦涛. 18CrNiMo7-6钢外圆磨削温度及表面完整性研究 [D]. 郑州: 郑州大学, 2021.

    ZHANG Jintao. Research on cylindrical grinding temperature and surface integrity of 18CrNiMo7-6 steel [D]. Zhengzhou: Zhengzhou University, 2021.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  108
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-30
  • 修回日期:  2023-03-24
  • 录用日期:  2023-04-28
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2024-02-20

目录

    /

    返回文章
    返回