Preparation and growth mechanism of ultra-thin free-standing polycrystalline diamond film based on glass carbon substrate
-
摘要: 选取Ti、Si、玻璃碳3种基底,采用微波等离子体化学气相沉积技术,以CH4/H2为反应源制备超薄多晶金刚石膜。通过SEM、Raman、台阶仪表征并分析所制备的金刚石薄膜整体形态、表面(断面)形貌、组成、应力状态等。结果表明:仅以玻璃碳为基体生长的金刚石膜能自动剥离形成完整自支撑体,且薄膜表面晶粒的晶面显形清晰,膜厚仅为10 μm; Raman光谱表征表明薄膜呈强的尖锐金刚石特征峰,且计算的残余应力最低,仅有−0.2161 GPa。可为超薄自支撑CVD金刚石膜的一步法生长-剥离提供新的技术途径。Abstract: In these experiments, Ti, Si and glass carbon substrates were selected to prepare ultra-thin polycrystalline diamond films by microwave plasma chemical vapor deposition (MPCVD) using CH4/H2 as the reaction source. The overall morphology, surface morphology, composition and stress state of the prepared diamond films were characterized and analyzed by SEM, Raman and a profilometer. The results show that only diamond films grown on glass carbon substrate can be automatically peeled off to form a complete free-standing film. The crystal surface of the film grains is clear, and the film thickness is only 10 μm. Raman spectra reveal that thin films have strong sharp diamond characteristic peaks, and that the calculated residual stress is the lowest, which is −0.2161 GPa. It is expected to provide an effective new technique for the one-step growth and stripping of ultra-thin self-supported CVD diamond films.
-
Key words:
- ultra-thin diamond film /
- free-standing /
- glass carbon substrate /
- film-substrate separation /
- growth mechanism /
- MPCVD
-
表 1 不同基底CVD膜的性能参数
Table 1. Performance parameters of CVD membranes with different substrates
基底 峰位 h / cm−1 偏移量 Δh / cm−1 应力状态 残余应力 σ / GPa Ti 1335.6627 3.1627 压应力 −1.9523 Si 1331.7312 −0.7688 张应力 0.4746 GC 1332.8501 0.3501 压应力 −0.2161 -
[1] LAM S E, BRADLEY D A, KHANDAKER M U. Small-field radiotherapy photon beam output evaluation: Detectors reviewed [J]. Radiation Physics and Chemistry,2021,178:108950. doi: 10.1016/j.radphyschem.2020.108950 [2] GUTHRIE M, PRUTEANU C G, DONNELLY M-E, et al. Radiation attenuation by single-crystal diamond windows [J]. Journal of Applied Crystallography,2017,50(1):76-86. doi: 10.1107/S1600576716018185 [3] MARINELLI M, FELICI G, GALANTE F, et al. Design, realization, and characterization of a novel diamond detector prototype for FLASH radiotherapy dosimetry [J]. Medical Physics,2022,49(3):1902-1910. doi: 10.1002/mp.15473 [4] SATURDAY L, WILSON L, RETTERER S, et al. Thermal conductivity of nano- and micro-crystalline diamond films studied by photothermal excitation of cantilever structures [J]. Diamond and Related Materials,2021,113:108279. doi: 10.1016/j.diamond.2021.108279 [5] LUO S Y, HO J K, TSAI M Y, et al. A study of the diamond tools for grinding polycrystalline diamond [J]. Advanced Materials Research,2010,585:126-128. doi: 10.4028/www.scientific.net/AMR.126-128.585 [6] LIU L Y, OUYANG X P, ZHANG J F, et al. Properties comparison between nanosecond X-ray detectors of polycrystalline and single-crystal diamond [J]. Diamond and Related Materials,2016,73:248-252. doi: 10.1016/j.diamond.2016.10.002 [7] 李义锋. 新型高功率MPCVD装置研制与金刚石膜高效沉积 [D]. 北京: 北京科技大学, 2015.LI Yifeng. Design of high power MPCVD reactors and synthesis of high quality diamond films [D]. Beijing: University of Science and Technology Beijing, 2015. [8] YING X, LUO J, WANG P, et al. Ultra-thin freestanding diamond window for soft X-ray optics [J]. Diamond and Related Materials,2003,12:719-722. doi: 10.1016/S0925-9635(02)00340-0 [9] SHVYD’KO Y, BLANK V, TERENTYEV S. Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving [J]. MRS Bulletin,2017,42(6):437-444. doi: 10.1557/mrs.2017.119 [10] DING M, LI L, DU Y, et al. Correlation between growth mechanism of microcrystalline diamond-ultrananocrystalline diamond composite and mechanical properties of its thin THz TWT windows: "Proceedings of IEEE International Vacuum Electronics Conference (IVEC)" [C/OL]. IEEE: Monterey, CA, USA, 2018: 249-250[2023-05-07]. https://ieeexplore.ieee.org/document/8391667 [11] HAQUE M S, NASSEM H A, MALSHE A P, et al. A study of stress in microwave plasma chemical vapor deposited diamond films using X-Ray diffraction [J]. Chemical Vapor Deposition,1997,3(3):129-135. doi: 10.1002/cvde.19970030304 [12] MOKUNO Y, CHAYAHARA A, YAMADA H. Synthesis of large single crystal diamond plates by high rate homoepitaxial growth using microwave plasma CVD and lift-off process [J]. Diamond & Related Materials,2007,17(4/5):415-418. doi: 10.1016/j.diamond.2007.12.058 [13] MOKUNO Y, KATO Y, TSUBOUCHI N, et al. A nitrogen doped low-dislocation density free-standing single crystal diamond plate fabricated by a lift-off process [J]. Applied Physics Letters,2014,104(25):252109. doi: 10.1063/1.4885552 [14] LIU Z, CHEN L, LI C, et al. Thermal stress in free-standing diamond films with Cr interlayer destroyed [J]. Journal of Materials Science and Technology,2010,26(11):991-995. doi: 10.1016/S1005-0302(10)60162-4 [15] GUO J, LIU J, HUA C, et al. Interfacial stress evolution simulation on the graphite substrate/interlayer/diamond film during the process [J]. Diamond and Related Materials,2017,75:12-17. doi: 10.1016/j.diamond.2016.12.017 [16] TERRANOVA M L, ROSSI M, SESSAL V, et al. Development of different carbon phases during diamond film growth by CVD on glassy carbon substrates [J]. Solid State Communications,1994,91(1):55-58. doi: 10.1016/0038-1098(94)90842-7 [17] SANKARAN K J, FICEK M, KUNUKU S, et al. Self-organized multi-layered graphene-boron-doped diamond hybrid nanowalls for high-performance electron emission devices [J]. Nanoscale,2018,10(3):1345-1355. doi: 10.1039/C7NR06774G [18] KAUR G, PULAGARA N V, KUMAR R, et al. Metal foam-carbon nanotube-reduced graphene oxide hierarchical structures for efficient field emission [J]. Diamond and Related Materials,2020,106:107847. doi: 10.1016/j.diamond.2020.107847 [19] VLASOV I, RALCHENKO V, ZAKHAROV D, et al. Intrinsic stress origin in high quality CVD diamond films [J]. Physica Status Solidi (A),1999,174(1):11-18. doi: 10.1002/(SICI)1521-396X(199907)174:1<11::AID-PSSA11>3.0.CO;2-T [20] MUKHOPADHYAY D. Identifying the causes of residual stress in polycrystalline diamond compact (PDC) cutters by X-Ray diffraction technique [J]. Results in Materials,2021,11(580):100216. doi: 10.1016/j.rinma.2021.100216 [21] HINZMANN D, BöTTCHER, REIMERS W, et al. Ex situ residual stress analysis of chemical vapor deposited diamond coated cutting tools by synchrotron X-Ray diffraction in transmission geometry [J]. Advanced Engineering Materials,2021,23(11):2001525. doi: 10.1002/adem.202001525 [22] GRACIO J J, FAN Q H, MADALENO J C. Diamond growth by chemical vapour deposition [J]. Journal of Physics D:Applied Physics,2010,43(37):374017. doi: 10.1088/0022-3727/43/37/374017 -