CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于玻璃碳基底的超薄自支撑多晶金刚石膜制备

熊枭 王兵 熊鹰 吴国栋

熊枭, 王兵, 熊鹰, 吴国栋. 基于玻璃碳基底的超薄自支撑多晶金刚石膜制备[J]. 金刚石与磨料磨具工程, 2023, 43(5): 531-536. doi: 10.13394/j.cnki.jgszz.2023.0005
引用本文: 熊枭, 王兵, 熊鹰, 吴国栋. 基于玻璃碳基底的超薄自支撑多晶金刚石膜制备[J]. 金刚石与磨料磨具工程, 2023, 43(5): 531-536. doi: 10.13394/j.cnki.jgszz.2023.0005
XIONG Xiao, WANG Bing, XIONG Ying, WU Guodong. Preparation and growth mechanism of ultra-thin free-standing polycrystalline diamond film based on glass carbon substrate[J]. Diamond & Abrasives Engineering, 2023, 43(5): 531-536. doi: 10.13394/j.cnki.jgszz.2023.0005
Citation: XIONG Xiao, WANG Bing, XIONG Ying, WU Guodong. Preparation and growth mechanism of ultra-thin free-standing polycrystalline diamond film based on glass carbon substrate[J]. Diamond & Abrasives Engineering, 2023, 43(5): 531-536. doi: 10.13394/j.cnki.jgszz.2023.0005

基于玻璃碳基底的超薄自支撑多晶金刚石膜制备

doi: 10.13394/j.cnki.jgszz.2023.0005
基金项目: 四川省省院省校合作项目(2021YFSY0029)
详细信息
    通讯作者:

    熊鹰,男,1980年生。主要从事碳基薄膜材料的化学气相沉积制备及在电子束源、电子器件、电化学等领域的应用研究。E-mail: xiongying@swust.edu.cn

  • 中图分类号: TG174.444; TQ164

Preparation and growth mechanism of ultra-thin free-standing polycrystalline diamond film based on glass carbon substrate

More Information
    Corresponding author: XIONG Ying, male, born in 1980. He majors in CVD preparation of carbon-based thin films and their application in electron beam sources, electronics, electro-chemistry, etc.E-mail: xiongying@swust.edu.cn
  • 摘要:

    选取Ti、Si、玻璃碳3种基底,采用微波等离子体化学气相沉积技术,以CH4/H2为反应源制备超薄多晶金刚石膜。通过SEM、Raman、台阶仪表征并分析所制备的金刚石薄膜整体形态、表面(断面)形貌、组成、应力状态等。结果表明:仅以玻璃碳为基体生长的金刚石膜能自动剥离形成完整自支撑体,且薄膜表面晶粒的晶面显形清晰,膜厚仅为10 μm; Raman光谱表征表明薄膜呈强的尖锐金刚石特征峰,且计算的残余应力最低,仅有−0.2161 GPa。可为超薄自支撑CVD金刚石膜的一步法生长-剥离提供新的技术途径。

     

  • 图  1  不同基底上生长的金刚石膜

    Figure  1.  Diamond films grown on different substrates

    图  2  不同基底生长的薄膜SEM图

    Figure  2.  SEM plots of films grown on different substrates

    图  3  不同基底生长薄膜的Raman光谱

    Figure  3.  Raman spectra of films grown on different substrates

    图  4  GCD膜的截面、形核面及Si基底金刚石形核面SEM图

    Figure  4.  SEM diagrams of cross-section and nucleation surface of GC substrate diamond film and nucleation surface of Si substrate diamond

    图  5  生长前后玻璃碳基底的表面SEM图

    Figure  5.  Surface SEM of a glass-carbon substrate before and after growth

    图  6  玻璃碳基底上不同沉积时间的SEM图

    Figure  6.  SEM plots of different nucleation times on glassy carbon substrate

    表  1  不同基底CVD膜的性能参数

    Table  1.   Performance parameters of CVD membranes with different substrates

    基底峰位 h / cm−1偏移量 Δh / cm−1应力状态残余应力 σ / GPa
    Ti1335.6627 3.1627压应力−1.9523
    Si1331.7312−0.7688张应力 0.4746
    GC1332.8501 0.3501压应力−0.2161
    下载: 导出CSV
  • [1] LAM S E, BRADLEY D A, KHANDAKER M U. Small-field radiotherapy photon beam output evaluation: Detectors reviewed [J]. Radiation Physics and Chemistry,2021,178:108950. doi: 10.1016/j.radphyschem.2020.108950
    [2] GUTHRIE M, PRUTEANU C G, DONNELLY M-E, et al. Radiation attenuation by single-crystal diamond windows [J]. Journal of Applied Crystallography,2017,50(1):76-86. doi: 10.1107/S1600576716018185
    [3] MARINELLI M, FELICI G, GALANTE F, et al. Design, realization, and characterization of a novel diamond detector prototype for FLASH radiotherapy dosimetry [J]. Medical Physics,2022,49(3):1902-1910. doi: 10.1002/mp.15473
    [4] SATURDAY L, WILSON L, RETTERER S, et al. Thermal conductivity of nano- and micro-crystalline diamond films studied by photothermal excitation of cantilever structures [J]. Diamond and Related Materials,2021,113:108279. doi: 10.1016/j.diamond.2021.108279
    [5] LUO S Y, HO J K, TSAI M Y, et al. A study of the diamond tools for grinding polycrystalline diamond [J]. Advanced Materials Research,2010,585:126-128. doi: 10.4028/www.scientific.net/AMR.126-128.585
    [6] LIU L Y, OUYANG X P, ZHANG J F, et al. Properties comparison between nanosecond X-ray detectors of polycrystalline and single-crystal diamond [J]. Diamond and Related Materials,2016,73:248-252. doi: 10.1016/j.diamond.2016.10.002
    [7] 李义锋. 新型高功率MPCVD装置研制与金刚石膜高效沉积 [D]. 北京: 北京科技大学, 2015.

    LI Yifeng. Design of high power MPCVD reactors and synthesis of high quality diamond films [D]. Beijing: University of Science and Technology Beijing, 2015.
    [8] YING X, LUO J, WANG P, et al. Ultra-thin freestanding diamond window for soft X-ray optics [J]. Diamond and Related Materials,2003,12:719-722. doi: 10.1016/S0925-9635(02)00340-0
    [9] SHVYD’KO Y, BLANK V, TERENTYEV S. Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving [J]. MRS Bulletin,2017,42(6):437-444. doi: 10.1557/mrs.2017.119
    [10] DING M, LI L, DU Y, et al. Correlation between growth mechanism of microcrystalline diamond-ultrananocrystalline diamond composite and mechanical properties of its thin THz TWT windows: "Proceedings of IEEE International Vacuum Electronics Conference (IVEC)" [C/OL]. IEEE: Monterey, CA, USA, 2018: 249-250[2023-05-07]. https://ieeexplore.ieee.org/document/8391667
    [11] HAQUE M S, NASSEM H A, MALSHE A P, et al. A study of stress in microwave plasma chemical vapor deposited diamond films using X-Ray diffraction [J]. Chemical Vapor Deposition,1997,3(3):129-135. doi: 10.1002/cvde.19970030304
    [12] MOKUNO Y, CHAYAHARA A, YAMADA H. Synthesis of large single crystal diamond plates by high rate homoepitaxial growth using microwave plasma CVD and lift-off process [J]. Diamond & Related Materials,2007,17(4/5):415-418. doi: 10.1016/j.diamond.2007.12.058
    [13] MOKUNO Y, KATO Y, TSUBOUCHI N, et al. A nitrogen doped low-dislocation density free-standing single crystal diamond plate fabricated by a lift-off process [J]. Applied Physics Letters,2014,104(25):252109. doi: 10.1063/1.4885552
    [14] LIU Z, CHEN L, LI C, et al. Thermal stress in free-standing diamond films with Cr interlayer destroyed [J]. Journal of Materials Science and Technology,2010,26(11):991-995. doi: 10.1016/S1005-0302(10)60162-4
    [15] GUO J, LIU J, HUA C, et al. Interfacial stress evolution simulation on the graphite substrate/interlayer/diamond film during the process [J]. Diamond and Related Materials,2017,75:12-17. doi: 10.1016/j.diamond.2016.12.017
    [16] TERRANOVA M L, ROSSI M, SESSAL V, et al. Development of different carbon phases during diamond film growth by CVD on glassy carbon substrates [J]. Solid State Communications,1994,91(1):55-58. doi: 10.1016/0038-1098(94)90842-7
    [17] SANKARAN K J, FICEK M, KUNUKU S, et al. Self-organized multi-layered graphene-boron-doped diamond hybrid nanowalls for high-performance electron emission devices [J]. Nanoscale,2018,10(3):1345-1355. doi: 10.1039/C7NR06774G
    [18] KAUR G, PULAGARA N V, KUMAR R, et al. Metal foam-carbon nanotube-reduced graphene oxide hierarchical structures for efficient field emission [J]. Diamond and Related Materials,2020,106:107847. doi: 10.1016/j.diamond.2020.107847
    [19] VLASOV I, RALCHENKO V, ZAKHAROV D, et al. Intrinsic stress origin in high quality CVD diamond films [J]. Physica Status Solidi (A),1999,174(1):11-18. doi: 10.1002/(SICI)1521-396X(199907)174:1<11::AID-PSSA11>3.0.CO;2-T
    [20] MUKHOPADHYAY D. Identifying the causes of residual stress in polycrystalline diamond compact (PDC) cutters by X-Ray diffraction technique [J]. Results in Materials,2021,11(580):100216. doi: 10.1016/j.rinma.2021.100216
    [21] HINZMANN D, BöTTCHER, REIMERS W, et al. Ex situ residual stress analysis of chemical vapor deposited diamond coated cutting tools by synchrotron X-Ray diffraction in transmission geometry [J]. Advanced Engineering Materials,2021,23(11):2001525. doi: 10.1002/adem.202001525
    [22] GRACIO J J, FAN Q H, MADALENO J C. Diamond growth by chemical vapour deposition [J]. Journal of Physics D:Applied Physics,2010,43(37):374017. doi: 10.1088/0022-3727/43/37/374017
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  646
  • HTML全文浏览量:  221
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-06
  • 修回日期:  2023-03-18
  • 录用日期:  2023-04-04
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2023-10-20

目录

    /

    返回文章
    返回