Citation: | LIU Yamei, WANG Jiali, GU Yan, WU Shuang, LI Zhen. Research of brittle-plastic behavior of SiCp/Al composites based on nano-indentation/scratch[J]. Diamond & Abrasives Engineering, 2024, 44(5): 607-620. doi: 10.13394/j.cnki.jgszz.2023.0165 |
[1] |
FAN Y, XU Y, HAO Z, et al. Cutting deformation mechanism of SiCp/Al composites based on strain gradient theory [J]. Journal of Materials Processing Technology,2022,299:117345. doi: 10.1016/j.jmatprotec.2021.117345
|
[2] |
YIN W, DUAN C, LI Y, et al. Dynamic cutting force model for cutting SiCp/Al composites considering particle characteristics stochastic models [J]. Ceramics International,2021,47(24):35234-35247. doi: 10.1016/j.ceramint.2021.09.066
|
[3] |
XIANG D, LIU G, PENG P, et al. Micro-removal characteristics of SiCp/Al by ultrasonic vibration-assisted scratch [J]. Materials and Manufacturing Processes,2022,37(16):1829-1836. doi: 10.1080/10426914.2022.2065007
|
[4] |
房玉鑫, 王优强, 张平, 等. SiCp/Al复合材料高速切削去除机理及表面质量研究 [J]. 表面技术,2022,51(10):293-300. doi: 10.16490/j.cnki.issn.1001-3660.2022.10.031
FANG Yuxin, WANG Youqiang, ZHANG Ping, et al. High-speed cutting removal mechanism and surface quality of SiCp/Al composites [J]. Surface Technology,2022,51(10):293-300. doi: 10.16490/j.cnki.issn.1001-3660.2022.10.031
|
[5] |
ZHU C, GU P, WU Y, et al. Surface roughness prediction model of SiCp/Al composite in grinding [J]. International Journal of Mechanical Sciences,2019,155:98-109. doi: 10.1016/j.ijmecsci.2019.02.025
|
[6] |
LAGHARI R A, JAMIL M, LAGHARI A A, et al. A critical review on tool wear mechanism and surface integrity aspects of SiCp/Al MMCs during turning: Prospects and challenges [J]. The International Journal of Advanced Manufacturing Technology,2023,126(7/8):2825-2862. doi: 10.1007/s00170-023-11178-7
|
[7] |
SHEN H, BROUSSEAU E, KULASEGARAM S. Assessment and validation of SPH modeling for nano-indentation [J]. Computational Particle Mechanics,2023,10(3):603-6132. doi: 10.1007/s40571-022-00514-5
|
[8] |
YUAN Z, SHEN Q, LIU H, et al. Damage behavior and mechanism of SiCp/Al composites under biaxial tension [J]. Materials Characterization,2021,180:111402. doi: 10.1016/j.matchar.2021.111402
|
[9] |
AKINWAMIDE S O, AKINRIBIDE O J, OLUBAMBI P A. Microstructural evolution, mechanical and nanoindentation studies of stir cast binary and ternary aluminium based composites [J]. Journal of Alloys and Compounds,2021,850:156586. doi: 10.1016/j.jallcom.2020.156586
|
[10] |
ZHANG Z, YAO P, WANG J, et al. Analytical modeling of surface roughness in precision grinding of particle reinforced metal matrix composites considering nanomechanical response of material [J]. International Journal of Mechanical Sciences,2019,157:243-253. doi: 10.1016/j.ijmecsci.2019.04.047
|
[11] |
LIU Y, WANG Q, LU C, et al. Microscopic residual stress evolution at the SiC/Al interface during nanoindentation via molecular dynamics simulation [J]. Surfaces and Interfaces,2022:102210. doi: 10.1016/j.surfin.2022.102210
|
[12] |
KONG X, WANG B, WANG M, et al. Microscratch characteristic and deformation mechanism of SiC particle-reinforced composites at elevated temperatures [J]. Advanced Composites Letters,2020,29:1-11. doi: 10.1177/2633366X19898694
|
[13] |
SUN X, YAO P, QU S, et al. Material properties and machining characteristics under high strain rate in ultra-precision and ultra-high-speed machining process: A review [J]. The International Journal of Advanced Manufacturing Technology,2022,120(11/12):7011-7042. doi: 10.1007/s00170-022-09111-5
|
[14] |
卢守相, 杨秀轩, 张建秋, 等. 关于硬脆材料去除机理与加工损伤的理性思考 [J]. 机械工程学报,2022,58(15):31-45. doi: 10.3901/JME.2022.15.031
LU Shouxiang, YANG Xiuxuan, ZHANG Jianqiu, et al. Rational discussion on material removal mechanisms and machining damage of hard and brittle materials [J]. Journal of Mechanical Engineering,2022,58(15):31-45. doi: 10.3901/JME.2022.15.031
|
[15] |
ZHANG Y, WU T, LI C, et al. Numerical simulations of grinding force and surface morphology during precision grinding of leucite glass ceramics [J]. International Journal of Mechanical Sciences,2022,231:107562. doi: 10.1016/j.ijmecsci.2022.107562
|
[16] |
LI C, ZHANG Q, ZHANG Y, et al. Nanoindentation and nanoscratch tests of YAG single crystals: An investigation into mechanical properties, surface formation characteristic, and theoretical model of edge-breaking size [J]. Ceramics International,2020,46(3):3382-3393. doi: 10.1016/j.ceramint.2019.10.048
|
[17] |
FU J, KAMALI-BERNARD S, BERNARD F, et al. Comparison of mechanical properties of CSH and portlandite between nano-indentation experiments and a modeling approach using various simulation techniques [J]. Composites Part B: Engineering,2018,151:127-138. doi: 10.1016/j.compositesb.2018.05.043
|
[18] |
LUU H T, DANG S L, HOANG T V, et al. Molecular dynamics simulation of nanoindentation in Al and Fe: On the influence of system characteristics [J]. Applied Surface Science,2021,551:149221. doi: 10.1016/j.apsusc.2021.149221
|
[19] |
SONG H, YAVAS H, VAN D G E, et al. Discrete dislocation dynamics simulations of nanoindentation with pre-stress: Hardness and statistics of abrupt plastic events [J]. Journal of the Mechanics and Physics of Solids,2019,123:332-347. doi: 10.1016/j.jmps.2018.09.005
|
[20] |
ZHANG Z, NI Y, ZHANG J, et al. Multiscale simulation of surface defects influence nanoindentation by a quasi-continuum method [J]. Crystals,2018,8(7):291. doi: 10.3390/cryst8070291
|
[21] |
XIAO X, LI S, YU L. Effect of irradiation damage and indenter radius on pop-in and indentation stress-strain relations: Crystal plasticity finite element simulation [J]. International Journal of Mechanical Sciences,2021,199:106430. doi: 10.1016/j.ijmecsci.2021.106430
|
[22] |
LICHINCHI M, LENARDI C, HAUPT J, et al. Simulation of Berkovich nanoindentation experiments on thin films using finite element method [J]. Thin Solid Films,1998,312(1/2):240-248. doi: 10.1016/S0040-6090(97)00739-6
|
[23] |
LI H, CHEN J, CHEN Q, et al. Determining the constitutive behavior of nonlinear visco-elastic-plastic PMMA thin films using nanoindentation and finite element simulation [J]. Materials & Design,2021,197:109239. doi: 10.1016/j.matdes.2020.109239
|
[24] |
李洪钢. LED封装基板超精密磨削表面材料去除机理[D]. 大连: 大连理工大学, 2021.
LI Honggang. Research on material removal mechanism in ultra-precision grinding of LED package substrate[D]. Dalian: Dalian University of Technology, 2021.
|
[25] |
GU P, ZHU C, TAO Z, et al. Micro-removal mechanism of high volume fraction SiCp/Al composite in grinding based on cohesive theory [J]. The International Journal of Advanced Manufacturing Technology,2021,117:243-265. doi: 10.1007/s00170-021-07578-2
|
[26] |
刘亚龙. 材料微纳米尺度压痕硬度检测的仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
LIU Yalong. Research on material micro-nano indentation hardness measurement simulation [D]. Harbin: Harbin Institute of Technology, 2010.
|
[27] |
OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research,1992,7(6):1564-1583. doi: 10.1557/JMR.1992.1564
|
[28] |
张杰. 基于纳米压痕法AZ31BMg/6061Al复合材料连接界面行为研究 [D]. 太原: 太原理工大学, 2021.
ZHANG Jie. Study on interface behavior of AZ31BMg/6061Al composite based on nanoindentation method[D]. Taiyuan: Taiyuan University of Technology, 2021.
|
[29] |
GUO X, GUO Q, NIE J, et al. Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites [J]. Materials Science and Engineering:A,2018,711:643-649. doi: 10.1016/j.msea.2017.11.068
|
[30] |
WANG Y, LIAO W, YANG K, et al. Simulation and experimental investigation on the cutting mechanism and surface generation in machining SiCp/Al MMCs [J]. The International Journal of Advanced Manufacturing Technology,2019,100:1393-1404. doi: 10.1007/s00170-018-2769-0
|
[31] |
魏斌. 加热辅助切削SiCp/Al复合材料的切削力和表面质量研究 [D]. 大连: 大连理工大学, 2020.
WEI Bin. Research on cutting force and surface quality of heating-assisted cutting SiCp/Al composite[D]. Dalian: Dalian University of Technology, 2020.
|
[32] |
ZHANG H, RAMESH K T, CHIN E S C. Effects of interfacial debonding on the rate-dependent response of metal matrix composites [J]. Acta Materialia,2005,53(17):4687-4700. doi: 10.1016/j.actamat.2005.07.004
|
[33] |
田达, 傅宏俊, 吴利伟, 等. 增韧复合材料的GI断裂韧性有限元模拟 [J]. 复合材料科学与工程,2018,(1):18-22. doi: 10.3969/j.issn.1003-0999.2018.01.003
TIAN Da, FU Hongjun, WU Liwei, et al. Finite element simulation of GI fracture toughness of toughened composites [J]. Composites Science and Engineering,2018,(1):18-22. doi: 10.3969/j.issn.1003-0999.2018.01.003
|
[34] |
郑伟. SiCp/Al复合材料超声振动磨削材料去除及表面质量研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
ZHENG Wei. Research on material removal and surface finish in ultrasonic vibration grinding of SiCp/Al composites [D]. Harbin: Harbin Institute of Technology, 2017.
|
[1] | WEN Jiazhou, WANG Qingxia, YU Aiwu, WU Chongjun. Removal mechanism of unidirectional Cf/SiC composites based on single diamond grit scratching[J]. Diamond & Abrasives Engineering, 2024, 44(3): 327-334. doi: 10.13394/j.cnki.jgszz.2023.0104 |
[2] | XIAO Changjiang, MA Jinming, TAO Hongjun, ZHANG Qunfei, CAO Jianfeng, LI Yuan, ZHOU Shijie, TANG Yulin, CHEN Yachao, LI Zhengxin, DONG Qingyan. Effect of CNTs on properties of PcBN composites with mixed particle size[J]. Diamond & Abrasives Engineering, 2024, 44(2): 193-198. doi: 10.13394/j.cnki.jgszz.2023.0093 |
[3] | LIN Jieqiong, JIA Ru, ZHOU Yan, GU Yan. PCD tool wear in cutting SiCp/6005Al composites[J]. Diamond & Abrasives Engineering, 2023, 43(3): 322-331. doi: 10.13394/j.cnki.jgszz.2022.0143 |
[4] | CAO Guixin, DONG Zhiguo, ZHANG Zehua, HOU Zhangmin. Model construction and experimental research on end grinding force of SiCp/Al composites[J]. Diamond & Abrasives Engineering, 2023, 43(3): 340-347. doi: 10.13394/j.cnki.jgszz.2022.0112 |
[5] | CAI Jianing, FAN Zimin, LE Chen, LI Xin, TANG Mingqiang, ZHAO Fang. Effect of SiC content on properties of copper matrix composites[J]. Diamond & Abrasives Engineering, 2023, 43(6): 743-749. doi: 10.13394/j.cnki.jgszz.2022.0183 |
[6] | CAI Jianing, LE Chen, FAN Zimin, LI Xin, TANG Mingqiang, ZHAO Fang. Influence of hot-pressed sintering temperature on properties of SiCp/Al composites[J]. Diamond & Abrasives Engineering, 2023, 43(5): 546-552. doi: 10.13394/j.cnki.jgszz.2022.0105 |
[7] | KANG Huiyuan, KANG Aolong, JIAO Zengkai, WANG Xi, ZHOU Kechao, MA Li, DENG Zejun, WANG Yijia, YU Zhiming, WEI Qiuping. Configuration design and thermal conductivity of diamond-SiC/Al composites[J]. Diamond & Abrasives Engineering, 2022, 42(5): 527-534. doi: 10.13394/j.cnki.jgszz.2022.0015 |
[8] | ZHANG Bin, GUO Hongyi. Microstructures and mechanical properties of PCBN materials[J]. Diamond & Abrasives Engineering, 2022, 42(6): 699-704. doi: 10.13394/j.cnki.jgszz.2022.0078 |
[9] | SUN Baoyu, FU Xingbao, YUAN Xu, GU Yan. Research on ultrasonic vibration grinding technology of SiCp/Al composites[J]. Diamond & Abrasives Engineering, 2022, 42(6): 713-719. doi: 10.13394/j.cnki.jgszz.2022.0016 |
[10] | GAO Wei, ZHANG Yinxia, HUANG Pengju. Study on material removal mechanism of 6H-SiC single crystal wafer based on different nano-scratch order[J]. Diamond & Abrasives Engineering, 2021, 41(4): 92-97. doi: 10.13394/j.cnki.jgszz.2021.4.0013 |
[11] | ZHANG Xun, CHEN Yan, XU Jiuhua, YANG Haojun, CHEN Yijia. Finite element simulation of and experimental study on three-dimensional drilling of large diameter carbon fiber composites[J]. Diamond & Abrasives Engineering, 2020, 40(2): 53-60. doi: 10.13394/j.cnki.jgszz.2020.2.0010 |
[12] | JIANG Peijun. Three dimensional simulation and experiment of plane grinding temperature field based on temperature matching method[J]. Diamond & Abrasives Engineering, 2020, 40(5): 96-101. doi: 10.13394/j.cnki.jgszz.2020.05.0017 |
[13] | YUAN Dongfang, ZOU Qin, LI Yanguo, WANG Mingzhi. Study on wear resistance of Ti3SiC2 composite materials[J]. Diamond & Abrasives Engineering, 2019, 39(6): 30-38. doi: 10.13394/j.cnki.jgszz.2019.6.0006 |
[14] | GUO Zhihao, XIE Lijing, XIE Zhiyong, LIANG Guoxiang. Optimization of cutting parameters in crankshaft inner milling based on finite element simulation[J]. Diamond & Abrasives Engineering, 2019, 39(6): 88-91. doi: 10.13394/j.cnki.jgszz.2019.6.0015 |
[15] | DENG Fuming, HE Xuehua, DENG Wenli, ZHANG Zhuowei, WANG Hao, ZHANG Peng, FENG Fei. Microstructure and properties of solid PCBN composites with different TiN contents[J]. Diamond & Abrasives Engineering, 2019, 39(5): 39-43. doi: 10.13394/j.cnki.jgszz.2019.5.0008 |
[16] | WANG Yu, FAN Jiangbo, XU Changcheng, LI Rui, ZHANG Xiaolong. Study on stress distribution of rake face based on finite element method[J]. Diamond & Abrasives Engineering, 2019, 39(5): 103-107. doi: 10.13394/j.cnki.jgszz.2019.5.0018 |
[17] | MA Lijun, LI Wenfeng, HUANG Qingfei, XIE Yubo, HOU Yonggai. Effect of particle size and content of silicon powder on microstructure and properties of SiC ceramic materials[J]. Diamond & Abrasives Engineering, 2018, 38(4): 61-63,71. doi: 10.13394/j.cnki.jgszz.2018.4.0012 |
[18] | TAN Cui, ZHAO Mingyong, YE Fangjian. Effect of Cr powder on thermal conductivity and mechanical property of diamond tool[J]. Diamond & Abrasives Engineering, 2017, 37(2): 69-72,77. doi: 10.13394/j.cnki.jgszz.2017.2.0015 |
[19] | HU Yule, LIU Naipeng, ZHAO Xiaojun, YU Xi. Design of intelligent device to detect mechanical properties of metallic matrix of diamond bits[J]. Diamond & Abrasives Engineering, 2017, 37(2): 78-81. doi: 10.13394/j.cnki.jgszz.2017.2.0017 |
[20] | ZHANG Liaoyuan, SU Junjin, LIU Xiaodong, GUAN Huiyu, LIU Wei. Study on mechanical properties of diamond wire saw under ultrasonic tension[J]. Diamond & Abrasives Engineering, 2017, 37(4): 38-43. doi: 10.13394/j.cnki.jgszz.2017.4.0008 |