Effect of brazing process on microstructure and properties of brazed diamond interface
-
摘要: 采用WC/Cu-Sn-Ti钎料对金刚石进行真空钎焊,借助扫描电子显微镜、X射线衍射仪、能谱仪以及磨削试验等手段,研究钎焊温度和保温时间对钎焊金刚石形貌、界面组织和力学性能的影响。结果表明:金刚石颗粒与WC/Cu-Sn-Ti复合钎焊界面形成的化合物层均匀连续且致密,且在金刚石颗粒表面形成了薄而连续的层片状TiC和少量W2C相,提高了金刚石与钢基体的结合强度;随着钎焊温度升高及保温时间延长,钎焊界面缺陷逐渐减少,金刚石石墨化程度升高;在钎焊温度为980 ℃、保温时间为15 min的条件下,金刚石颗粒在磨削过程中的摩擦力和摩擦系数相对较小,对大理石工件的磨削体积最大,且金刚石颗粒的脱落率最低。
-
关键词:
- Cu-Sn-Ti钎料 /
- 钎焊工艺 /
- 力学性能 /
- 金刚石磨具
Abstract:Objectives Diamond tools are widely used in various fields. Copper-based brazing materials are used for brazing diamond tools. In response to the problems of low-temperature phase flow and low bonding strength of copper-based brazing materials at high temperatures, different brazing temperatures and brazing times are designed, and the WC/Cu-Sn-Ti composite brazing material is used for vacuum induction brazing to study the changes in microstructure and mechanical properties of brazed joints. Methods The brazing samples were made of HWD40 diamond with a particle size code of 35/40, a 45 steel matrix, and WC/Cu-Sn-Ti composite brazing filler metal. The vacuum degree was 1×10−3 Pa, the brazing temperature were 950, 980, 1 010, 1 040 and 1 070 ℃, and the brazing time was 10, 15, 20 and 25 min, respectively. The SEM observation and XRD phase analysis were carried out on different samples after brazing. At the same time, friction and wear tests were carried out on brazing samples at different temperatures and different holding times to obtain the grinding amount and diamond drop rate of the samples, so as to analyze the mechanical properties of the joint structures. Results (1) Under the conditions of a brazing temperature of 980 ℃ and a holding time of 15 min, the line scan analysis is conducted on the elements at the brazed diamond interface. It is found that the W element is enriched near the brazed diamond interface, possibly due to the diffusion of elements in WC. The XRD phase analysis showes the formation of TiC and W2C compounds at the diamond interface, which can improve the wettability between the diamond and brazing material, and enhance the adhesion of the brazing material to the diamond. In order to further determine the formation of TiC, the sample is subjected to aqua regia etching, and the surface of the diamond particle is analyzed by SEM and EDS to determine that the TiC is formed by the metallurgical reaction between the active element Ti and the C element on the diamond surface. (2) To investigate the effect of the brazing process on the surface morphology of brazed diamond, the morphology of the diamond surface is analyzed at different brazing temperatures with a holding time of 15 minutes. It is found that the diamond surface has obvious pores and cracks at a brazing temperature of 950 ℃. When the brazing temperature is raised to 980 ℃, the cutting edge of the diamond remaines intact, and the diamond is exposed the most. As the brazing temperature continues to rise, the diamond graphitization phenomenon in the brazed sample becomes severe. Therefore, the brazing process with a holding time of 15 minutes and a brazing temperature of 980 ℃ has the best effect. (3) Raman analysis is performed on the samples at 950, 1 010, and 1 070 ℃ to calculate the ratios of the diamond peak and graphite peak in the samples. It is found that when the temperature increases from 950 ℃ to 1 070 ℃, the temperature increases by 12%, and the degree of graphitization of diamond increases by 90%. At the same time, when the brazing temperature is 980 ℃, the main wear form of the diamond is flat and micro-damage, and the diamond shedding rate is 0. (4) To further compare the effect of insulation time on the performance of brazed joints, friction and wear tests are conducted on samples with different insulation times at the optimal brazing temperature of 980 ℃. It is found that as the insulation time increases, the number of diamond drops increases from 0 to 3. However, if the insulation time is too long, the diamond particles suffer thermal damage. When the brazed sample with an insulation time of 15 minutes is used to grind marble, the marble grinding volume of the sample is 36.154 mm3, and the grinding performance of the sample is the best. Conclusions The compound layer at the interface between the diamond particles and the WC/Cu-Sn-Ti composite brazing is uniform, continuous and dense. A thin and continuous layered TiC and a small amount of W2C phase are formed on the surface of diamond particles, which improves the bonding strength between the diamond and steel substrate. Under the conditions of a brazing temperature of 980 ℃ and a holding time of 15 min, the friction coefficient of diamond particles in the grinding process is small, the grinding amount of the marble workpiece is large, and the diamond particle shedding rate is low. By reasonably controlling the brazing temperature and holding time, the efficiency and quality of diamond-abrasive tools in the processing of marble and other materials can be improved, the shedding rate of diamond particles can be reduced, and the service life of abrasive tools can be extended. At a brazing temperature of 980 °C and a holding time of 15 minutes, the diamond particles exhibit a low friction coefficient during the grinding process, a high grinding volume on marble workpieces, and a low diamond drop-out rate. By controlling the brazing temperature and holding time, the efficiency and quality of diamond grinding tools in processing materials such as marble can be improved, reducing the diamond particle drop-out rate and extending the tool's service life. The WC/Cu-Sn-Ti brazing material was used for vacuum brazing of diamond. The effects of brazing temperature and holding time on the morphology, the interfacial structure, and mechanical properties of brazed diamond were studied using a scanning electron microscope, X-ray diffractometer, energy spectrum analysis, and shear and grinding experiments. The results show that the compound layer formed at the composite brazing interface between diamond particles and WC/Cu-Sn-Ti is uniform, continuous and dense, and a thin and continuous layered TiC and a small amount of W2C phases are formed on the surface of diamond particles, which improves the bonding strength between the diamond and steel matrix. As the brazing temperature increases and the holding time prolongs, the interface defects of brazing gradually decrease, and the degree of diamond graphitization increases. Under the brazing temperature of 980 ℃ and a holding time of 15 minutes, the friction force and the coefficient of friction of diamond particles during the grinding process are relatively small, resulting in the largest grinding volume for the marble workpiece and the lowest detachment rate of diamond particles. -
正四面体金刚石晶体中的每1个碳原子都以sp3杂化形式与另外4个碳原子形成很强的C―C共价键,是目前世界上公认最硬的物质之一[1-2]。金刚石在工业上被广泛应用于磨削加工玻璃、陶瓷等硬脆材料,常用的金刚石工具有各种刀具、钻头、砂轮和锯片等。目前,金刚石工具的制作方法主要有电镀[3]、烧结[4]和钎焊[5] 等,相比于前2种机械结合的方法,钎焊法具有接头结合强度高、磨具锋利度好、使用寿命长等优点,被广泛用来制作单层金刚石工具[6]。
在工业上钎焊法常用的钎料有Ag基钎料、Cu基钎料、Ni基钎料3类,其中:润湿性优良的Ag基钎料由于成本高在应用上受到限制;Ni基钎料具有较高的熔化温度,导致钎焊后金刚石磨具的热应力很大且金刚石热损伤严重;Cu基钎料由于成本低、润湿性好、熔化温度适中等优点越来越受到人们的欢迎。然而,铜基钎料在高温时存在低温相流淌、结合强度较低等问题[7],研究人员常在钎料中加入一些增强相(如碳纤维[8]、各种金属元素[9]、镍铬合金[10]、各种微米级碳化物[11]和石墨烯[12]等),以提高钎料的整体性能。
在前期研究中发现,在Cu基钎料中加入WC增强相,可提高钎料的硬度以及降低液态钎料的流淌性,且在WC添加质量分数为15%时获得了性能优良的金刚石磨具[13]。相对于钎料成分而言,加入增强相对于接头组织力学性能的影响不可忽视,且加入的WC和W2C会在不同温度下相互转化[14]以及WC与Ti反应[15]会影响接头处的组织及分布。但是,对于钎焊工艺对WC增强相的添加造成的组织与力学性能的变化研究较少。因此,设计不同的钎焊温度和保温时间,采用WC/Cu-Sn-Ti复合钎料来进行真空感应钎焊,研究接头的组织和力学性能变化规律,以期改善钎焊工艺,提升金刚石工具的性能。
1. 试验材料及方法
采用黄河旋风股份有限公司生产的HWD40型人造金刚石,其粒度标记为35/40。45#钢基体,其规格是长为15.70 mm、宽为6.40 mm、高为8.64 mm。试验钎料采用山东烟台固光钎料公司生产的纯度为99.5%的Cu-Sn-Ti钎料,其基本颗粒尺寸为100 μm,Cu-Sn-Ti钎料中的元素质量配比是m(Cu)∶m(Sn)∶m(Ti) = 70∶20∶10。采用中冶鑫盾生产的纯度为99.8%的WC粉末,WC粉末基本颗粒尺寸约为100 μm。在Cu-Sn-Ti钎料中添加质量分数为15%的WC粉末来配制WC/Cu-Sn-Ti复合钎料。
钎焊试样制作过程为:(1)试验前对金刚石和钢基体进行超声波清洗并在烘箱中烘干。(2)钎料按比例称重混合,再将钎料放入丙酮溶液中,在超声波清洗机中振荡30 min,同时顺时针不停搅拌以混合均匀,完成后放入烘干箱中烘干。重复此过程,使钎料充分混合均匀。(3)将混合好的钎料按照约100 μm厚度平铺在钢基体上,将10颗金刚石分为2列,均匀放在钎料表面,再放入RYL-25-19型真空热压炉进行钎焊。钎焊时真空度为1 × 10−3 Pa,钎焊温度分别设置为950、980、1 010、1 040和1 070 ℃,保温时间分别设置为10、15、20和25 min,钎焊后试样随炉冷却至100 ℃,后取出自然冷却。图1是制作完成的钎焊试样结构示意图,其单层金刚石均匀排布在钎料表面。
对钎焊后的试样进行清洗、烘干,采用线切割取样并制备金相试样。采用JSM6510扫描电镜(SEM)观察钎焊后金刚石形貌及钎焊结合界面的显微组织,并结合自带能谱仪(EDS)进行成分测定;采用Max型X射线衍射仪对钎焊结合界面的物相进行分析。
在MFT-3000多功能摩擦磨损测试仪上测试钎焊金刚石试样的摩擦系数和摩擦力,用其表示金刚石磨削性能。测试试样长为15.70 mm、宽为6.40 mm、高为8.65 mm,且将试样和直径为40 mm、厚度为20 mm的大理石工件分别固定在如图2所示的高精度摩擦磨损测试仪销钉和圆盘上。试验时工件的转速为50 r/min,施加载荷为100 N,磨削时间为2 min。用MFT-3000信号采集系统实时记录摩擦系数信号,用LQ-C1003精密电子天平称量大理石的磨损质量。用JSM6510扫描电镜观察金刚石磨粒的磨损形貌。
2. 结果及讨论
2.1 钎焊金刚石界面的形貌及元素扩散
图3为在钎焊温度为980 ℃和保温时间为15 min条件下,钎焊金刚石界面形貌及其界面处的元素扫描结果。由图3b可以看出:C峰在界面附近40 μm处强度急剧下降,Cu、Sn和Ti峰强度却较高;而W元素的强度除在40 μm处较高外,还在57 μm处较高,说明W元素在这两处都出现了偏聚,可能出现了Cu、Sn或Ti的金属间化合物以及W和Ti的碳化物,这与文献[16]的研究结果类似。
为更准确反映界面处元素的分布情况,对金刚石界面进行了面扫描,不同元素的映射关系结果见图3c~图3g。结合图3b和3g可知:W元素在钎焊金刚石界面附近富集,考虑是WC发生了元素扩散。
为确定在钎焊温度为980 ℃和保温时间为15 min条件下的钎焊金刚石表面及其附近物相,对钎焊金刚石界面及其附近区域进行XRD测试,结果见图4。从图4可知:(Cu,Ti)x和Cu5.6Sn是钎料在钎焊过程中元素间相互作用形成的金属间化合物,且发现接头处有TiC和W2C 2种新的碳化物。TiC和W2C的生成反应式见式(1)、式(2),由此可以确定图3b中箭头所指的第1处为钎料中未溶解的WC,第2、第3处是反应生成的W2C。在金刚石界面上反应生成TiC和W2C,可以改善金刚石与钎料之间的润湿性,提高钎料对金刚石的把持力。
$$ \mathrm{Ti + C}\xlongequal{\quad\;\;}{\mathrm{TiC}} $$ (1) $$ \mathrm{2WC + Ti}\xlongequal{\quad\;\;}{\mathrm{TiC}} + {\mathrm{W}}_{ \mathrm{2}} \mathrm{C} $$ (2) 为进一步研究钎焊温度为980 ℃、保温时间为15 min条件下钎焊金刚石表面的生成物,使用王水对钎焊后的金刚石进行刻蚀,去除钎焊金刚石表面的钎焊金属,并对刻蚀后的钎焊金刚石表面进行高倍SEM表征,结果如图5所示。从图5a可以看出:金刚石的切削刃保存完整,其表面附着薄层生成物。图5b是图5a中方框微区的高倍SEM形貌,可以看出钎焊金刚石表面的生成物为致密连续分布的化合物。对图5b中的选点(红色+号)进行EDS分析,结果见图5c。由图5c可以看出:表面化合物主要由C元素(质量分数为50.74%)和Ti元素(质量分数为44.68%)组成,再结合图4中的XRD结果,可以确定其为TiC,证明活性元素Ti与金刚石表面的C元素发生了冶金反应。生成的TiC层改善了金刚石和Cu基钎料之间的润湿性,还可改善两者间存在的较大的物理、化学性能差异现象,对彼此间结合界面产生的残余应力释放起到积极作用。
2.2 钎焊工艺对钎焊金刚石表面形貌的影响
图6为保温时间为15 min时不同钎焊温度下的钎焊金刚石表面宏观形貌。由图6可以看出:950 ℃下的金刚石表面切削刃完整,未完全扩散的钎料浸润金刚石的部分很小,且钎焊结合处的裂纹和孔洞等缺陷明显,其在金刚石磨具服役过程中会生长变大甚至可能导致金刚石磨具失效;随着钎焊温度升高,980和1 010 ℃下的金刚石表面切削刃依然完整,但钎料扩散较为完全,钎焊结合处的缺陷数目明显减小。且980 ℃下金刚石的出露高度更高,钎焊结合处的形貌更好;然而,随着钎焊温度进一步升高,1 040和1 070 ℃下的金刚石表面石墨化较严重,而且钎料包裹金刚石较为严重,破坏了金刚石表面的切削刃,进而会影响金刚石的磨削性能。因此,980 ℃下钎焊金刚石的工艺最佳。
图7是钎焊温度为980 ℃时不同保温时间下的金刚石钎焊后的表面形貌。从图7中可以清楚看到:金刚石的出露高度随着保温时间的延长逐渐降低,过长或过短的保温时间都不利于形成一个良好的结合界面。保温时间过短,界面反应不充分,钎料爬升不明显,金刚石与基体的结合强度不高;保温时间过长,金刚石表面严重的石墨化和金刚石切削刃被钎料所覆盖将导致金刚石磨具失去切削刃。在15 min保温时间下,钎料浸润金刚石的出露高度约占金刚石颗粒尺寸的1/2,相比其他温度下的钎焊金刚石颗粒出露高度,其钎焊金刚石磨粒的形貌最优。
2.3 钎焊温度对金刚石磨削性能的影响
钎焊工艺中钎焊温度越高,钎料中元素的活性越大,冶金反应越充分,越有利于形成力学性能可靠的界面结合组织;然而过高的钎焊温度,使得金刚石的石墨化倾向严重,势必会造成金刚石在磨具中的服役性能降低。
为了探究钎焊温度对金刚石石墨化程度的影响,在950、1 010和1 070 ℃温度下保温15 min钎焊金刚石,金刚石的拉曼光谱如图8所示。从图8中可以明显看出:随着钎焊温度升高,位于3 135 cm−1 附近的石墨峰强度明显增强,说明金刚石的石墨化程度逐渐加深。
从热力学角度分析,金刚石石墨化的吉布斯自由能$ \mathrm{\Delta }{G}_{\mathrm{T}}^{\mathrm{\Theta }} $与温度T的关系如式(3)所示。式(3)中的温度越高,金刚石转化为石墨的吉布斯自由能越低,即石墨化越容易,这与图8的拉曼光谱结果相对应。
$$ \mathrm{\Delta }{G}_{\mathrm{T}}^{\mathrm{\Theta }}\leqslant -1\;100-4.64T $$ (3) 在保证所有试验结果在同样环境条件下进行分析测试的基础上,定义金刚石的石墨化程度φ[17]:
$$ \varphi =\frac{S_{\mathrm{G}}}{S_{\mathrm{D}}} $$ (4) 式中:φ为金刚石的石墨化程度,SG为石墨拉曼峰的面积,SD为金刚石拉曼峰的面积。
图9展示了试样在950、
1010 、1070 ℃温度下保温15 min的石墨化程度,通过微积分计算石墨峰以及金刚石峰的峰面积。从图9中得出:随着温度升高,金刚石的石墨化程度逐渐增加;当温度从950 ℃升高到1070 ℃时,温度升高13%,石墨化程度增加90%。分别对保温时间为15 min时不同钎焊温度下的试样进行摩擦磨损试验,图10为金刚石的摩擦力和摩擦系数随磨削时间的变化曲线。从图10中可以发现:磨削初期的摩擦力和摩擦系数急剧上升,这主要是因为在磨削初期,金刚石磨粒压入工件材料表面,工件材料原本光滑的表面开始变得粗糙,使金刚石磨粒的磨削力和摩擦系数急剧增加;随着磨削试验的进行,金刚石与工件材料表面接触良好,形成了稳定的摩擦作用,摩擦力和摩擦系数逐渐趋于稳定。另外,研究发现[18]:金刚石磨粒在同等工况下的磨削力越小,则其在磨削过程中的损耗越小。
从图10中还可以看出:当钎焊温度为950和980 ℃时,金刚石的整体磨削力和摩擦系数较低。结合图6的金刚石SEM形貌分析,这是由于金刚石的出露高度较大,切削面积增加使摩擦力降低。但当钎焊温度为950 ℃时,金刚石磨粒的切削刃保存完整(图6),但磨削力在120 s后陡升,这一现象可能是金刚石磨粒与钎料合金连接处的缺陷导致的。在钎焊过程中,由于金刚石与钎料合金连接处焊接不牢固,在界面或者近界面处可能存在微小间隙等缺陷。这些缺陷会导致金刚石在磨削过程中易于脱落,在磨损过程中试样进入三体磨损阶段引发磨损加速,导致在磨损120 s后发生磨削力陡升的现象。当钎焊温度为980 ℃时,由于温度升高,金刚石与钎料合金中的活性元素Ti反应生成Ti-C层,提高了金刚石与钎料合金的结合强度。当钎焊温度为1 010 ℃时, 金刚石石墨化程度提高,部分金刚石在磨削过程中发生大面积破碎导致金刚石切削高度不一,部分完整的金刚石参与磨削而使金刚石的摩擦力增加。当钎焊温度为1 040 ℃时,在前60 s金刚石还能保持较低的摩擦力,但其后摩擦力急剧上升。这主要是由于前60 s金刚石表层石墨化后又出现了新的切削刃,其与工件材料间形成了稳定的摩擦作用,降低了金刚石与工件材料间的摩擦作用力;但其后由于钎焊温度较高,金刚石与钎料中的活性元素Ti反应激烈致使界面Ti-C层厚度增加,造成界面处应力集中,且部分金刚石脱落使得摩擦力增加。当钎焊温度为1 070 ℃时,钎焊温度升高使金刚石石墨化严重,且金刚石与钎料中活性元素的反应更激烈,界面Ti-C层厚度进一步增加,致使金刚石在压应力和剪切应力作用下更易破裂和脱落,导致金刚石的摩擦力增加、磨损率高、耐磨性变差。
图11为不同钎焊温度下保温15 min时金刚石的磨损形貌。图12为不同钎焊温度下保温15 min时钎焊金刚石试样的金刚石脱落率统计,其表示金刚石脱落的颗数与金刚石总颗数的百分比。如图11、图12所示:当钎焊温度为950 ℃时,金刚石的主要磨损形态是脱落(图11d),其脱落率最高为20%。这可能是因为钎焊温度较低,金刚石的过度暴露导致其与钎料在界面处的结合状态较弱,对金刚石的把持力不足,从而在摩擦磨损试验中易于脱落。此外,钎焊时间不够也可能是其中一个原因。当钎焊温度提升至980 ℃时,金刚石的主要磨损形态是平整和微破损(图11a、图11b),金刚石的脱落率为0。此时钎料合金与金刚石的结合力较950 ℃时的有所增强,且达到理想状态。当钎焊温度为1 010 ℃时,金刚石在钎焊过程中可能发生石墨化,但此时的金刚石磨损情况与980 ℃时的基本类似,金刚石的少量石墨化对其性能影响不大。当钎焊温度升至1 040和1 070 ℃时,金刚石的磨损形态主要是大面积破损和脱落(图11c、图11d),金刚石的脱落率为10%。通过观察可以发现,金刚石易在应力集中的区域直接断裂,残余的小部分金刚石与钎料结合,这与金刚石在高温下产生石墨化有很大关系。
2.4 保温时间对金刚石磨削性能的影响
钎焊工艺中保温时间越长,界面元素扩散的时间就较长,钎料对于金刚石的浸润更彻底;但如果钎焊保温时间过长,便有金刚石产生热损伤的可能性。为了探究最佳的保温时间,在最佳钎焊温度为980 ℃的基础上对不同保温时间下的试样进行摩擦磨损试验,其摩擦系数和金刚石脱落数如图13所示。图13中:不同保温时间下金刚石磨粒的摩擦系数变化较大,但金刚石的脱落数变化并不明显,说明保温时间对金刚石力学性能的影响不大。相反,根据2.3节中的结果,温度对金刚石力学性能的影响较大,在实验中优先考虑钎焊温度的影响是合理的。
从图13中可直观看出:保温时间为10和15 min时,磨削中金刚石脱落的颗粒数均为最小值0,但保温时间为15 min时,金刚石磨粒的摩擦系数相对最小,因此保温时间为15 min时的金刚石力学性能更优。当保温时间延长时,金刚石脱落数增加,结合图7的形貌图分析,过长的保温时间会使金刚石的出露高度进一步降低,同时金刚石表面的切削刃被钎料大量覆盖,这不利于金刚石磨粒参与磨削。综合来看,在保温时间为15 min时,金刚石的力学性能最佳。
大理石工件被磨削的体积可以进一步反映金刚石磨粒的磨削性能。对不同保温时间下钎焊的金刚石试样,计算其在磨削中磨掉的大理石体积。假设大理石表面完全光滑,图14为金刚石试样磨削大理石的磨削过程示意图。如图14所示:A为金刚石试样磨削大理石的深度,H为金刚石磨粒出露高度,D和H1分别为金刚石磨削之后大理石磨损坑的直径和高度,L为大理石与钢基体之间的距离。根据式(5)计算大理石的磨削体积Vc:
$${V}_{{\mathrm{c}}}=\text{π} \left(\frac{{D}^{2}{H}_{1}}{8} + \frac{{{H}_{1}}^{3}}{6}\right) $$ (5) 假设磨损坑为规则的圆弧,其圆心位于L之间,则可得到D与H1以及L之间的关系式:
$$ D=2\sqrt{{{H}_{1}}^{2} + {H}_{1}L}$$ (6) 而L与H1以及金刚石试样磨削大理石的深度A之间的关系式为:
$$ L={H}_{1}-A $$ (7) 联立式(5)~式(7)得到:
$${V}_{{\mathrm{c}}}=\text{π} \left\{\frac{{\left[2\left(\sqrt{{{H}_{1}}^{2} + {H}_{1}\left(H_{1}-A\right)}\right)\right]}^{2}{H}_{1}}{8} + \frac{{{H}_{1}}^{3}}{6}\right\} $$ (8) 图15为钎焊温度为980 ℃时不同保温时间下钎焊金刚石试样磨削大理石的体积。如图15所示:在10、15、20和25 min的保温时间下,保温时间为15 min时的金刚石试样磨削大理石的体积最大,从侧面进一步证明了此时金刚石试样的磨削性能最优。
3. 结论
(1)金刚石颗粒与WC/Cu-Sn-Ti复合钎焊界面形成的化合物层均匀连续且致密,在金刚石颗粒表面形成了薄而连续的层片状TiC和少量W2C相,提高了金刚石与钢基体的结合强度。
(2)钎焊温度和保温时间对于钎焊后金刚石形貌有很大影响。随着钎焊温度升高,钎料沿金刚石表面爬升高度增加且金刚石石墨化加重,但界面缺陷逐渐减小。保温时间过短,界面反应不充分,钎料爬升不明显,金刚石与基体的结合强度不高;保温时间过长,金刚石表面石墨化严重,且其切削刃被钎料所覆盖,将导致金刚石磨具失去切削能力。
(3)在钎焊温度为980 ℃和保温时间为15 min的条件下,金刚石颗粒在磨削过程中的摩擦力和摩擦系数相对较小,对大理石工件的磨削体积最大,且金刚石颗粒的脱落率最低。
-
-
[1] MONTEIRO W A, CARRIO J A G, DA SILVEIRA C R, et al. Structural and electrical properties of copper-nickel-aluminum alloys obtained by conventional powder metallurgy method [J]. Materials Science Forum, 2010, 660/661: 41-45 [2] SUNG J C, SUNG M. The brazing of diamond [J]. International Journal of Refractory Metals & Hard Materials,2009,27(2):382-393. doi: 10.1016/j.ijrmhm.2008.11.011 [3] SU S Y, ZANG J B, ZHOU Y K, et al. Efficient manufacture of high-performance electroplated diamond wires utilizing Cr-coated diamond micro-powder [J]. Materials Science in Semiconductor Processing,2024, 179:108511. doi: 10.1016/j.mssp.2024.108511 [4] 李鸿程. 新型金刚石分齿烧结锯片的半自动成型模具 [J]. 超硬材料工程, 2010, 22(2): 28-31.LI Hongcheng. New semi-automated forming mould for sintering diamond saw blade [J]. Superhard Material Engineering, 2010, 22(2): 28-31. [5] 关砚聪, 郑敏利, 姚德明. 铜基钎料焊接金刚石的界面结构与强度 [J]. 焊接学报,2012,33(7):65-68,116.GUAN Yancong, ZHENG Minli, YAO Deming. Interfacial structure and strength of Cu-based filler metal welding diamond [J]. Transactions of the China Welding Institution,2012,33(7):65-68,116. [6] 周玉梅, 张凤林. 钎焊单层金刚石工具研究现状 [J]. 焊接技术,2010,39(6):1-6. doi: 10.3969/j.issn.1002-025X.2010.06.001ZHOU Yumei, ZHANG Fenglin. Status of research on brazed monolayer diamond tool [J]. Welding Technology,2010,39(6):1-6. doi: 10.3969/j.issn.1002-025X.2010.06.001 [7] LU J B, LI H, LI Y, et al. Study on diamond vacuum brazed with Cu-based filler metal containing Cr [J]. International Journal of Advanced Manufacturing Technology,2017,91(5/6/7/8):1453-1460. doi: 10.1007/s00170-016-9802-y [8] 卢金斌, 李华, 刘威, 等. 添加Ni-Cr-B-Si的Cu基复合钎料真空钎焊金刚石界面微结构 [J]. 中国机械工程,2018,29(3):353-358, 365. doi: 10.3969/j.issn.1004-132X.2018.03.016LU Jinbing, LI Hua, LIU Wei, et al. Interfacial microstructure of diamond vacuum brazed with Cu-based composite filler metals adding Ni-Cr-B-Si alloy [J]. China Mechanical Engineering,2018,29(3):353-358, 365. doi: 10.3969/j.issn.1004-132X.2018.03.016 [9] ZHU M, CHUNG D. Active brazing alloy containing carbon fibre for metal-ceramic ioining [J]. Journal of the American Ceramic Society,1994,77:2715-2720. doi: 10.1002/chin.199507018 [10] TAO Y, WANG Z, WANG X. Effects of Ni–Cr–Mo–Si–B prealloy additives on the properties of Fe-based diamond composites [J]. Diamond and Related Materials,2024,148:111482. doi: 10.1016/j.diamond.2024.111482 [11] XIAO H Z, XIAO B, WU H H, et al. Microstructure and mechanical properties of vacuum brazed CBN abrasive segments with tungsten carbide reinforced Cu-Sn-Ti alloys [J]. Ceramics International,2019,45(9):12469-12475. doi: 10.1016/j.ceramint.2019.03.181 [12] DUAN D Z, HAN F, DING J J, et al. Microstructure and performance of brazed diamonds with multilayer graphene-modified Cu–Sn–Ti solder alloys [J]. Ceramics International,2021,47(16):22854-22863. doi: 10.1016/j.ceramint.2021.04.304 [13] YIN X H, XU F, MIN C Y, et al. Promoting the bonding strength and abrasion resistance of brazed diamond using Cu-Sn-Ti composite alloys reinforced with tungsten carbide [J]. Diamond and Related Materials,2021,112:108239. doi: 10.1016/j.diamond.2021.108239 [14] MÜHLBAUER G, KREMSER G, BOCK A, et al. Transition of W2C to WC during carburization of tungsten metal powder [J]. International Journal of Refractory Metals and Hard Materials,2018,72:141-148. doi: 10.1016/j.ijrmhm.2017.12.018 [15] 候逸群, 张锁怀, 徐少丽, 等. 基于第一性原理的涂层WC/α-Ti界面结合能、稳定性及电子结构的研究 [J]. 热加工工艺,2021,50(10):75-80, 85. doi: 10.14158/j.cnki.1001-3814.20200177HOU Yiqun, ZHANG Suohuai, XU Shaoli, et al. Research on binding enegy, Stability and electronic structure of coating WC/α-Ti interface based on first principles [J]. Hot Working Technology,2021,50(10):75-80, 85. doi: 10.14158/j.cnki.1001-3814.20200177 [16] MIAO Q, DING W, ZHU Y, et al. Joining interface and compressive strength of brazed cubic boron nitride grains with Ag-Cu-Ti/TiX composite fillers [J]. Ceramics International,2016:13723-13737. doi: 10.1016/j.ceramint.2016.05.171 [17] 邹明, 周莱. 金刚石切削黑色金属时刀具磨损机理的摩擦磨损试验 [J]. 光学精密工程,2013,21(7):1786-1794. doi: 10.3788/OPE.20132107.1786ZOU Ming, ZHOU Lai. Tool wear mechanism of diamond cutting of ferrous metals in frictional wear experiments [J]. Optics and Precision Engineering,2013,21(7):1786-1794. doi: 10.3788/OPE.20132107.1786 [18] YIN X H, XU F, MIN C Y, et al. Promoting the bonding strength and abrasion resistance of brazed diamond using Cu-Sn-Ti composite alloys reinforced with tungsten carbide [J]. Diamond and Related Materials,2021(112):108239. -