Study on dispersion of abrasive particles in electro Fenton CMP slurry and design of green polishing fluid in neutral environment
-
摘要: 芬顿反应是一种能产生强氧化性羟基自由基( · OH)的绿色氧化反应,选用三聚磷酸钠(STPP)为外加电解质、金刚石为磨粒,比较STPP、NaCl和Na2SO4对芬顿反应中金刚石磨粒分散稳定性的影响,并研究该绿色抛光液在不同pH值下对电芬顿抛光液中金刚石磨粒的抗沉降能力、Zeta电位以及抛光液粒径的影响,并对GaN晶圆的抛光效果进行验证。结果表明:STPP能与芬顿反应抛光液中的Fe2+络合,防止多余的金属阳离子流入扩散层,提高了金刚石磨粒的分散稳定性,且STPP能有效改善芬顿反应抛光液中金刚石磨粒团聚的现象;此外,STPP使抛光液能在偏中性环境中具有较好的分散性,且含有STPP的绿色抛光液可在中性环境下实现对GaN晶圆高效、无损的超精密抛光。Abstract:
Objectives In the process of GaN ultra-precision polishing, diamond abrasives tend to agglomerate, leading to an increase in the average particle size of abrasives in the polishing slurry, which negatively impacts the surface precision of GaN. The addition of Fe2+ in the Fenton reaction exacerbates this phenomenon. To address this issue, adding electrolytes to the polishing slurry has proven effective in mitigating the agglomeration and sedimentation of abrasives. To compare the effects of STPP, NaCl, and Na2SO4 on the dispersion stability of diamond abrasives during the Fenton reaction, the citric acid and the sodium hydroxide are used as pH regulators to investigate the Fenton reaction of green polishing solution at different pH values. The effects on the anti-settling ability of diamond abrasive particles, the Zeta potential of polishing slurry, and the polishing solution abrasive particle size are studied, and the polishing effect on the GaN wafer is verified. Methods Nano-diamond abrasive particles with an average particle size of 180 nm were added to deionized water, and H2O2 with a mass fraction of 5% and FeSO4·7H2O with a mass of 0.2 g were added as the original reactants of the Fenton reaction. Then, NaCl, Na2SO4 and STPP electrolytes with a mass fraction of 1% were added to prepare three groups of Fenton reaction polishing slurry, which were compared with the original Fenton reaction polishing slurry without any additional electrolyte. After thorough stirring for 5 minutes and ultrasonic dispersion for 10 minutes, citric acid and sodium hydroxide were used to adjust the pH values of all four slurries to 3. At the same time, the polishing slurry with STPP electrolyte at a pH value of 6 was prepared, and the influence of pH value on the anti-settling effect of diamond abrasive particles under STPP electrolyte was preliminarily investigated as the control group. The above five groups of polishing slurries were added to glass bottles for particle settling experiments, and the dispersion stability of diamond abrasive particles in different groups of polishing slurry was observed. The Zetasizer Nano ZS90 nanometer particle size potential analyzer was used to measure the Zeta potential and the particle size of the five groups of polishing slurries before and after the addition of a pH regulator. Finally, the ECMP experiment was carried out to study the effects of green polishing slurries on material removal rate and surface roughness at different pH values. Results (1) When the pH value is 3, the original Fenton polishing slurry and the polishing slurries with NaCl and Na2SO4 electrolytes have weaker anti-settling ability compared to the polishing slurry with STPP added, and the effect of improving the anti-settling ability of diamond abrasives is not obvious. The first three groups of polishing slurries exhibit an obvious delamination phenomenon at the bottom within the first 10 minutes. This indicates that STPP can improve the anti-settling ability of diamond abrasives in Fenton reaction polishing slurry. Furthermore, comparing the polishing slurry samples with STPP added at pH values of 3 and 6, it is found that the anti-settling ability of diamond in the polishing slurry with a pH value of 3 is significantly lower than that in the sample with a pH value of 6, indicating that STPP can improve the anti-settling ability of diamond abrasives in an environment with a pH value of 6. (2) The addition of NaCl and Na2SO4 electrolytes results in a smaller absolute Zeta potential and poorer stability of the polishing slurry, while the addition of STPP greatly increases the dispersion stability of diamond abrasives in the Fenton reaction polishing slurry. At the same time, after adjusting the pH value to 3, the absolute values of the Zeta potential of all polishing slurries slightly decrease compared to before pH adjustment, indicating a decrease in the stability of the polishing slurry. That is, the addition of acidic electrolytes may reduce the stability of the polishing slurry. (3) When the surface of GaN is processed with the polishing slurry containing STPP, there are almost no deep scratches caused by abrasive agglomeration compared with other comparison groups. The surface quality of the processed GaN is the best, with a surface roughness Ra as low as 0.449 nm, and the material removal rate is much higher than that of the control group, reaching up to 705.3 nm/h. Conclusions The Fenton reaction utilizes Fe2+ to react with H2O2 to generate hydroxyl radicals (·OH) with strong oxidizing properties. With the addition of STPP, Fe2+in the solution forms a relatively stable complex Fe2+-STPP with STPP, and which quickly reacts with H2O2 to form Fe3+-STPP and ·OH after the addition of H2O2, effectively avoiding the presence of a large amount of free Fe3+ and the precipitation of Fe(OH)3. Adding STPP to the Fenton reaction polishing slurry with diamond as abrasive particles can broaden the pH range of the Fenton reaction polishing slurry, breaking the limit of pH≤3, and preventing the precipitation of iron flocs in the polishing slurry in a neutral environment. Meanwhile, STPP can enhance the anti-settling ability of diamond abrasives in the Fenton reaction polishing slurry in a neutral environment, and the alkaline pH regulator weakens the anti-settling ability of diamond abrasives in polishing slurry more significantly than the acidic pH regulator. -
伴随近年来智能制造、集成电路以及5G通信领域的发展,以氮化镓(GaN)为典型的第三代宽禁带半导体材料[1],因其具有高热导率、高电子迁移率、优异的耐腐蚀性能和抗辐照能力而受到世界各国政府、企业的高度重视[2]。但GaN作为衬底材料使用时,其需要原子级的光滑表面[3]。然而,GaN材料具有高硬、脆和化学惰性等特性,对其表面平坦化难度巨大。化学机械抛光(chemical mechanical polishing, CMP)是目前应用较广且能实现全局平坦化的超精密表面加工技术,其原理是通过化学反应与机械磨削的协同作用,对晶圆表层材料进行去除,从而得到光滑的平坦表面[3]。在以往的抛光研究和生产中,为了提高材料表面去除速率,通常会使用强酸、强碱或强腐蚀性的氧化剂来增强化学作用[4],以大幅度提升加工效率,但这会极大程度地降低抛光加工的安全性。
芬顿反应利用Fe2+与H2O2反应生成具有强氧化性的羟基自由基(·OH),从而被视作一种新型的绿色氧化反应。近年来,芬顿反应常被用作电化学机械抛光(electrochemical mechanical polishing, ECMP)GaN的化学氧化剂来源。杨军等[5]发现电场的加入能在抛光液中重新生成新的Fe2+和H2O2,保证了抛光液中·OH的供给量与存在寿命,且ECMP相对于CMP技术有着更高的加工效率。在磨粒的选取中,金刚石磨粒被视作工程陶瓷、玻璃、半导体等硬脆材料高效精密加工的重要载体[6],其具有较长的使用寿命和较高的加工效率[7]。但在抛光过程中,金刚石磨粒会出现团聚现象,增加抛光液中磨粒的平均粒径,从而影响GaN最终的表面精度,且芬顿反应中Fe2+的加入会使此现象变得更加显著。针对这一问题,在加工前一般会对抛光液进行超声分散,或在抛光液中添加一定量的分散剂降低金刚石磨粒的表面能[8],从而改善磨粒的团聚和沉降现象。
向芬顿反应抛光液中添加Na2SO4或NaCl等电解质能增强抛光液的导电性。ZHU等[9]使用Na2SO4为电解质,制备了新型氮化碳改性电极电芬顿溶液。朱蒙[10]研究了NaCl电解质在基于硫酸根自由基的电催化耦合高级氧化体系和4个不同的电芬顿体系的作用机制。程磊[11]研究发现:在以金刚石为磨粒的芬顿反应抛光液中加入NaCl或Na2SO4电解质,提高了抛光液中金刚石磨粒的沉降速率。邓凤霞[12]发现三聚磷酸钠(STPP)能增强芬顿体系的氧化能力。此外,为了防止抛光液中产生含铁沉淀,芬顿反应抛光液的pH值通常 ≤ 3。DO等[13]发现越高的pH值使得H2O2的稳定性越差,可利用的Fe2+越少。为满足pH值 ≤ 3的要求,就必须使常规芬顿反应的抛光液呈强酸性。张碧波等[14]研究发现:柠檬酸无毒且具有生物降解性,可在抛光液偏中性的条件下激活芬顿反应。
为比较STPP、NaCl和Na2SO4对芬顿反应中金刚石磨粒分散稳定性的影响,以柠檬酸和氢氧化钠为pH调节剂,深入研究绿色抛光液在不同pH值下的芬顿反应及其对金刚石磨粒的抗沉降能力、Zeta电位以及抛光液粒径的影响,并对GaN晶圆的抛光效果进行验证。
1. 实验
1.1 抛光液制备
采用平均粒径为180.0 nm的纳米金刚石磨粒,分别将3份5 g金刚石磨粒加入500 mL去离子水中,同时加入质量分数为5%的H2O2和0.2 g FeSO4·7H2O为芬顿反应原抛光液;再分别加入质量分数为1%的NaCl、Na2SO4和STPP电解质制备3组芬顿反应抛光液(抛光液分别命名为B、C、D),与未额外加入任何电解质的原芬顿反应抛光液(抛光液命名为A,除了无电解质外,其他完全相同)对比;且利用型号为pHS-25的pH计测量抛光液的pH值,抛光液A~D在pH调节剂加入前的pH值分别为5.5、5.8、5.5和8.0。4种抛光液均匀搅拌5 min后在20 kHz频率下超声分散10 min,选用柠檬酸和氢氧化钠为抛光液pH调节剂,将4组抛光液的pH调至3.0。同时,制作pH为6.0的加入STPP电解质的抛光液(该组抛光液命名为E,其制作过程与抛光液D的制作过程完全相同,只是柠檬酸的加入量不同,以使其pH不同),作为对照组初步探究pH值对STPP电解质下金刚石磨粒抗沉降效果的影响。此外,再制作仅添加金刚石磨粒与去离子水的纯金刚石抛光液F(pH为7.0)。6组抛光液的成分如表1所示。
表 1 6种抛光液成分Table 1. Six types of polishing solution components抛光液组号 外加电解质
种类电解质质量
分数 ω1 / %抛光液pH值 金刚石磨粒质量
分数 ω2 / %FeSO4·7H2O
质量 m / g去离子水 A 无 0 3.0 1 0.2 余量 B NaCl 1 3.0 1 0.2 余量 C Na2SO4 1 3.0 1 0.2 余量 D STPP 1 3.0 1 0.2 余量 E STPP 1 6.0 1 0.2 余量 F 无 0 7.0 1 0 余量 此外再制备5组抛光液,其加入的物质、含量及分散过程和参数与抛光液D在pH调节剂加入前的完全相同,只是后续加入pH调节剂的种类和含量不同。未添加pH调节剂的抛光液,即原始抛光液的pH值为8.0,其他抛光液的pH值是在8.0的基础上伴随柠檬酸的加入而降低,伴随氢氧化钠的加入而升高。5组抛光液的最终pH值分别为5.0、6.0、7.0、8.0、9.0,并分别命名为1、2、3、4、5,作为抛光液D的pH对照组使用。
1.2 抛光液性能分析
1.2.1 金刚石磨粒抗沉降实验
分别选取上述抛光液A~E和1~5各50 mL加入容积为50 mL的规则圆柱型玻璃瓶中进行磨粒沉降实验,观察不同组抛光液中金刚石磨粒的分散稳定情况。
1.2.2 Zeta电位测定
取分散好的抛光液各2 mL,将其均匀稀释1 000倍后,利用Zetasizer Nano ZS90纳米粒径电位分析仪分别测量A~D抛光液在pH调节剂加入前后的Zeta电位,以及编号为1~5的抛光液稀释相同倍数后的Zeta电位。
1.2.3 粒径分析
为了验证STPP对抛光液中金刚石磨粒团聚的影响,利用Zetasizer Nano ZS90纳米粒径电位分析仪测量纯金刚石抛光液F(由质量分数为1%的上述金刚石磨粒与去离子水混合而成,溶液pH值为7.0),pH值调节至3.0时的原始芬顿组样品A,外加质量分数分别为1% NaCl、Na2SO4和STPP的样品B、C、D,以及未添加pH调节剂(pH为8.0的STPP)的样品4这6组样品中磨粒的粒径。
1.3 GaN-ECMP实验
实验采用自研的ECMP抛光机及配制的A、B、C、D抛光液以及配制的1、2、3、4、5抛光液分别对GaN进行ECMP,抛光参数是:抛光压力为1.2 kg,抛光压强为27.6 kPa,抛光的阴阳两极导电材料均选取耐腐蚀不锈钢材料,氧化电压为7.5 V,抛光头和下抛光盘转速分别为70和110 r / min。为保证抛光液在磨抛界面的存在量,选用半径为150 mm的凹槽型抛光盘,抛光头和下抛光盘偏心距为35 mm,抛光时长为15 min。GaN晶圆的尺寸为10.0 mm × 10.0 mm × 0.5 mm。
GaN晶圆在抛光前后都选用KQ3200DA型数控超声波清洗器在无水乙醇下进行15 min的超声清洗,对清洗完毕后的GaN晶圆进行吹干处理。采用厦门易仕特仪器有限公司的ST-E120B II超精密天平对抛光前后的晶圆质量进行称量,天平精度为0.01 mg。选取5次稳定称量结果的均值,计算其表面的材料去除率RMRR:
$$ \mathit{R} _{ \mathrm{MRR}} \mathrm{=\Delta } \mathit{m} \mathrm{/} \mathit{\rho St} $$ (1) 式中:Δm为精密天平称量GaN样品抛光前后的质量差的平均值,mg;S为样品的表面积,cm2;t为样品抛光时间,h;RMRR单位为nm/h。
利用Bruker公司的Dimension Icon型原子力显微镜表征样品的表面粗糙度,用样品的表面轮廓算术平均偏差Ra表示。每个晶圆以几何中心为正中心,分别选取晶圆几何中心点及与几何中心点均匀分布的其他4个点,4点距离中心点均为30 mm,分别扫描5个10 μm × 10 μm区域的粗糙度值,样品的表面粗糙度Ra值取5组粗糙度值的均值。
2. 结果与讨论
2.1 电解质对芬顿反应中金刚石磨粒分散稳定性的影响
图1为不同时间下A~E抛光液的抗沉降效果。如图1所示:在pH为3.0时,原始芬顿反应抛光液A、加入NaCl和加入Na2SO4电解质的抛光液B和C相对于加入STPP的抛光液D的抗降沉能力更弱,且B和C抛光液对金刚石磨粒抗沉降能力提升的效果不明显,前3组在前10 min时底部就出现明显的分层现象,即STPP能够提高芬顿反应抛光液中金刚石磨粒的抗沉降能力。对比pH为3.0和6.0时的D、E样品时发现:抛光液D中金刚石的抗沉降能力也明显低于E样品的,即STPP能使金刚石磨粒在pH为6.0的环境中有更好的抗沉降能力。
图2为不同时间下1~5抛光液的抗沉降效果。如图2所示:外加STPP下,1~5抛光液的pH值分别为5.0~9.0,以未添加pH调节剂(pH = 8.0)的抛光液4为基础,伴随酸或碱性pH调节剂的加入,抛光液中磨粒的抗沉降能力随pH调节剂添加量的增加而减弱。即无论对原始STPP芬顿反应抛光液做任何pH值调节,都会使抛光液中磨粒的抗沉降能力降低,且酸或碱性电解质的添加量越多,抛光液的抗沉降能力越弱。对比pH为7.0和pH为9.0的抛光液3和5,发现碱性pH调节剂比酸性pH调节剂对芬顿抛光液中金刚石磨粒抗沉能力的削弱更为显著。
Zeta电位是评价抛光液稳定性的重要指标。通常认为:Zeta电位的绝对值越高,磨粒表面所带的电荷数就越多,磨粒之间的斥力越大,相互之间的距离也就越远,磨粒在抛光液中的悬浮稳定性就越好。将表1中A~D 4组抛光液稀释1 000倍后,对比其在pH调节前及调节至3.0后的Zeta电位的大小,结果如图3所示。
图3的结果显示:pH调节前(A~D的pH值范围为5.5~8.0)金刚石磨粒在原始芬顿反应抛光液A中的Zeta电位为−21.2 mV,在含NaCl和Na2SO4电解质的B和C液中Zeta电位分别为−16.1 mV和−16.7 mV,在含STPP电解质的D液中Zeta电位为−35.6 mV。Zeta电位绝对值 > 30.0 mV时表明抛光液体系趋于稳定。通过Zeta电位绝对值比较发现:NaCl和Na2SO4电解质的加入使得抛光液的Zeta电位绝对值更小,稳定性变得更差;而STPP的加入极大程度上提高了芬顿反应抛光液中金刚石磨粒的分散稳定性。同时,在pH调节至3.0后,所有抛光液的Zeta电位的绝对值相比pH调节前的都略有降低,说明抛光液的稳定性有所下降,即酸性电解质的加入可能会降低抛光液的稳定性。
单个颗粒在胶体溶液中是呈现电中性的,当2个颗粒间的距离减小到双电层结构时,相同电荷间会相互排斥,形成一个双电层斥力[11]。抛光液中外加的电解质会打破抛光液中原有的电荷浓度平衡,使得溶液内电荷浓度增加。当pH调节至3.0时,原芬顿反应抛光液中存在大量Fe3+,NaCl和Na2SO4电解质的加入也会带来大量的Na+,使抛光液中金属阳离子增多,金刚石磨粒表面吸附的金属阳离子也逐渐增多,而磨粒表面的吸附位点是有限的,当其对阳离子的电荷吸附达到饱和时,多余的金属阳离子会流入扩散层并对扩散层进行挤压,导致双电层模型中的扩散层厚度减小、双电层力减小,从而使静电斥力也减小,使得抛光液的抗沉降能力下降[11]。图4为双电层重叠示意图。
STPP由于能与芬顿反应中的Fe2+作用生成Fe2+-STPP络合物,很大程度上降低了抛光液中游离态Fe2+的含量,其原理如式(2)所示。抛光液中阳离子浓度降低,减缓了多余的金属阳离子流入扩散层而导致的Zeta电位绝对值降低,从而提高了抛光液的抗沉降能力。
$$ \mathrm{Fe}^{ \mathrm{2+}} \mathrm{+STPP} \xrightarrow{{\quad\;\;}} {\mathrm{Fe}}^{ \mathrm{2+}} {\text{-}}\mathrm{STPP} $$ (2) 图5为STPP下不同pH值抛光液的Zeta电位。如图5所示:将抛光液稀释1 000倍后,外加STPP下pH为5.0~9.0的1~5抛光液,伴随酸性或碱性调节剂的加入,抛光液的Zeta电位绝对值也都降低,且碱性物质的加入对抛光液Zeta电位绝对值降低的效果较酸性物质的更加明显,即抛光液在偏中性环境中有较好的稳定性。伴随着电解质浓度的增加,抛光液的抗沉降能力有减弱的趋势,最优的Zeta电位绝对值为pH = 8.0时的−41.6 mV,其结果与对应的图2沉降结果一致。
图6显示了不同电解质及pH下抛光液中金刚石磨粒平均粒径大小,图中的红色基线表示金刚石磨粒的原始平均粒径为180.0 nm。
从图6可以看出:纯金刚石抛光液F出现磨粒轻微团聚现象,抛光液中磨粒的平均粒径为214.4 nm;此外,原始芬顿反应抛光液A中磨粒的平均粒径最大,为629.5 nm;而加入NaCl和加入Na2SO4电解质的抛光液B和C的磨粒平均粒径有所降低,分别为524.9 nm及584.7 nm,但平均粒径仍较大。这表明金刚石磨粒发生了严重团聚,NaCl和Na2SO4电解质的加入对团聚现象的改善并不明显。但在加入STPP电解质的pH值为3.0的D抛光液中,抛光液中磨粒的平均粒径降至262.9 nm;而在加入STPP电解质的pH值为8.0的抛光液4中,磨粒的平均粒径降至最低,为193.5 nm,比纯金刚石磨粒的原始平均粒径稍大。因此,相比其他种类的电解质,STPP电解质的加入极大程度上改善了金刚石磨粒在芬顿反应抛光液中的团聚现象,使原始平均粒径为180.0 nm的金刚石磨粒在抛光液中稳定在193.5 nm。
2.2 STPP对金刚石磨粒抛光GaN性能的影响
图7为A、B、C、D 4种抛光液ECMP GaN后对其表面形貌及抛光效果的影响。
图7a~图7d的GaN表面形貌表明:加入STPP的抛光液加工GaN后,其表面几乎没有出现其他对比组中因磨粒团聚而出现的较深的划痕现象,表面质量最好,表面粗糙度最低。如图7e所示:原始芬顿反应抛光液A抛光后的GaN RMRR仅为286.3 nm/h,表面Ra为0.909 nm;含NaCl和Na2SO4电解质的B和C抛光液抛光后的RMRR较为接近,分别为363.8 nm/h和373.6 nm/h,表面Ra分别为0.647 nm和0.724 nm;而加入STPP的抛光液D的RMRR高达705.3 nm/h,约为抛光液A的2.5倍,表面Ra为0.449 nm。所以,抛光液D的RMRR远高于其他3组的,且材料表面的Ra最低。
图8是编号为1~5的抛光液ECMP GaN后对其抛光效果及表面形貌的影响。
图8a~图8e的GaN表面形貌表明:加入STPP后,pH为7.0的抛光液3加工的GaN表面几乎没有明显划痕,其表面质量最好,表面粗糙度最低。如图8f所示:加入STPP的1~5抛光液抛光后的GaN RMRR分别为670.3、730.4、912.0、813.6和550.4 nm/h,材料表面的Ra分别为0.640、0.482、0.321、0.620和0.753 nm,表明抛光液3(pH为7.0)的RMRR高于其他4组的,且材料表面的Ra最低。其结果并不完全与图6所示的平均粒径变化趋势一致,即决定GaN抛光效果的因素,除了磨粒的分散性外还与不同pH下抛光液的氧化效果、Fe2+的利用率等因素有关。
2.3 STPP下电芬顿液ECMP原理
芬顿反应可利用Fe2+与H2O2反应生成具有强氧化性的羟基自由基(·OH),伴随着STPP的加入,溶液中的Fe2+与STPP形成较为稳定的络合物Fe2+-STPP,且在H2O2通入后迅速与其反应生成Fe3+-STPP并产生·OH,有效避免了大量游离态Fe3+的存在而产生Fe(OH)3沉淀;此外由于电场的加入,生成的Fe3+-STPP在阴极部分会被还原成Fe2+-STPP,并伴随抛光液的流动,阴极产生的Fe2+-STPP会与阳极新产生的H2O2反应再次生成·OH[5]。STPP作用下的ECMP原理[12]如图9所示, 其化学反应如式(3)~式(8)所示。
$$ \mathrm{Fe}^{ \mathrm{2+}} {\text{-}}\mathrm{STPP+H}_{ \mathrm{2}} \mathrm{O}_{ \mathrm{2}} \mathrm{\xrightarrow{{\quad\;\;}} Fe}^{ \mathrm{3+}} {\text{-}}\mathrm{STPP+} \mathbf{·} \mathrm{OH+}^{ \mathrm-} \mathrm{OH} $$ (3) $$ {\mathrm{O}}_{2}+\mathrm{ }\mathrm{F}\mathrm{e} ^{2+}{\text{-}} \mathrm{S}\mathrm{T}\mathrm{P}\mathrm{P}\xrightarrow{{\quad\;\;}} {\mathrm{Fe}}^{3+}{\text{-}}{\mathrm{STPP}}+{\mathrm{O}}_{2}\mathbf{·} ^- $$ (4) $$ \mathrm{Fe}^{ \mathrm{3+}} {\text{-}}\mathrm{STPP+e}^{ \mathrm-} \mathrm{\xrightarrow{{\quad\;\;}} Fe}^{ \mathrm{2+}} {\text{-}}\mathrm{STPP} $$ (5) $$ {\mathrm{O}}_{2}+2{\mathrm{H}}_{2}{\mathrm{O}} \xrightarrow{{\quad\;\;}} 2{\mathrm{H}}_{2}{\mathrm{O}}_{2} $$ (6) $$\begin{split} & \mathrm{Fe}^{ \mathrm{2+}} {\text{-}}\mathrm{STPP + O}_{ \mathrm{2}} \mathbf{·}^{ \mathrm-} \mathrm{ + 2H}_{ \mathrm{2}} \mathrm{O} \xrightarrow{{\quad\;\;}} \\ &{\mathrm{Fe}}^{ \mathrm{3+}} {\text{-}}\mathrm{STPP + H}_{ \mathrm{2}} \mathrm{O}_{ \mathrm{2}} \mathrm{ + 2}^{ \mathrm-} \mathrm{OH} \end{split}$$ (7) $$ \mathrm{GaN+6} \mathbf{·} \mathrm{OH \xrightarrow{{\quad\;\;}} Ga}_{ \mathrm{2}} \mathrm{O}_{ \mathrm{3}} \mathrm{+3H}_{ \mathrm{2}} \mathrm{O+N}_{ \mathrm{2}} $$ (8) 3. 结论
(1)在以金刚石为磨粒的芬顿反应抛光液中添加STPP,拓宽芬顿反应抛光液pH值,打破其pH值 ≤ 3.0的限制,使抛光液在偏中性环境下不会产生铁絮状物沉淀。
(2)分散实验结果表明,STPP能够在偏中性环境中提高芬顿反应抛光液中金刚石磨粒的抗沉降能力,且碱性pH调节剂比酸性pH调节剂对抛光液中金刚石磨粒抗沉能力的削弱更为显著。
(3)Zeta电位测量结果显示,STPP的加入极大程度上提升了芬顿反应抛光液中金刚石磨粒的分散稳定性。在pH调节至3.0后,抛光液的稳定性有所下降。粒径测量结果显示,当STPP电解质抛光液pH = 8.0偏中性时,抛光液中的磨粒粒径降至最低,为193.5 nm。
(4)在pH为3.0时,不同电解质抛光液在芬顿反应条件下ECMP GaN的结果显示,STPP抛光液加工的 GaN的RMRR比原芬顿抛光液的提高了约2.5倍,且材料表面的Ra值最低为0.449 nm。STPP抛光液在不同pH值下ECMP GaN的结果显示,在抛光液pH为7.0时,加工GaN的RMRR最高为912.0 nm / h,材料表面的Ra值最低为0.321 nm。
-
表 1 6种抛光液成分
Table 1. Six types of polishing solution components
抛光液组号 外加电解质
种类电解质质量
分数 ω1 / %抛光液pH值 金刚石磨粒质量
分数 ω2 / %FeSO4·7H2O
质量 m / g去离子水 A 无 0 3.0 1 0.2 余量 B NaCl 1 3.0 1 0.2 余量 C Na2SO4 1 3.0 1 0.2 余量 D STPP 1 3.0 1 0.2 余量 E STPP 1 6.0 1 0.2 余量 F 无 0 7.0 1 0 余量 -
[1] 唐林江, 陈滔, 张宝林, 等. GaN基半导体技术的空间应用研究与展望 [J]. 空间电子技术,2018,15(2):60-67. doi: 10.3969/j.issn.1674-7135.2018.02.010TANG Linjiang, CHEN Tao, ZHANG Baolin, et al. Space application research and prospect of GaN-based semiconductor technology [J]. Space Electronics Technology,2018,15(2):60-67. doi: 10.3969/j.issn.1674-7135.2018.02.010 [2] 顾雨萍, 李向江, 吴秀梅. 第三代半导体材料发展前景分析 [J]. 中国集成电路,2023,32(3):22-25. doi: 10.3969/j.issn.1681-5289.2023.03.005GU Yuping, LI Xiangjiang, WU Xiumei. Development prospect of third generation semiconductor materials [J]. China Integrated Circuits,2023,32(3):22-25. doi: 10.3969/j.issn.1681-5289.2023.03.005 [3] ARJUNAN A C, SINGH D, WANG H T, et al. Improved free-standing GaN schottky diode characteristics using chemical mechanical polishing [J]. Applied Surface Science,2008,255(5):3085-3089. doi: 10.1016/j.apsusc.2008.08.096 [4] GAO P L, ZHANG Z Y, WANG D, et al. Research progress of green chemical mechanical polishing slurry [J]. Acta Physica Sinica, 2021, 70(6): 234130440. [5] 杨军, 陈泽鹏, 郭雅茹, 等. 电芬顿降解抗生素废水研究进展 [J]. 当代化工,2023,52(10):2427-2433. doi: 10.13840/j.cnki.cn21-1457/tq.2023.10.037YANG Jun, CHEN Zepeng, GUO Yaru, et al. Research progress on the degradation of antibiotic wastewater by electrofenton [J]. Contemporary Chemical Industry,2023,52(10):2427-2433. doi: 10.13840/j.cnki.cn21-1457/tq.2023.10.037 [6] 马成新, 史小华. 浅谈金刚石工具的现状与发展趋势 [J]. 超硬材料工程,2015,27(5):45-48. doi: 10.3969/j.issn.1673-1433.2015.05.009MA Chengxin, SHI Xiaohua. A brief discussion on the current status and development trends of diamond tools [J]. Journal of Superhard Materials Engineering,2015,27(4):45-28. doi: 10.3969/j.issn.1673-1433.2015.05.009 [7] 董彦辉, 牛风丽, 任泽. 金刚石磁性磨料与SiC磁性磨料的研磨加工性能分析 [J]. 金刚石与磨料磨具工程,2023,43(3):379-385. doi: 10.13394/j.cnki.jgszz.2022.0154DONG Yanhui, NIU Fengli, REN Ze. Analysis of abrasive performance of diamond magnetic abrasives and SiC magnetic abrasives [J]. Diamond and Abrasive Tools Engineering,2023,43(3):379-385. doi: 10.13394/j.cnki.jgszz.2022.0154 [8] DERJAGUIN B, LANDAU L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes [J]. Progress in Surface Science,1993,43(1 / 2 / 3 / 4):30-59. doi: 10.1016/0079-6816(93)90013-L [9] ZHU Y, QIU S, DENG F, et al. Enhanced degradation of sulfathiazole by electro-Fenton process using a novel carbon nitride modified electrode [J]. Carbon,2019,145:321-332. doi: 10.1016/j.carbon.2019.01.032 [10] 朱蒙. 氯化钠电解质在电催化氧化体系降解有机污染物的作用研究 [D]. 南昌: 南昌航空大学, 2022.ZHU Meng. Study on the degradation of organic pollutants by sodium chloride electrolyte in electrocatalytic oxidation system [D]. Nanchang: Nanchang Hangkong University, 2022. [11] 程磊. 基于电解质调控的熔石英磁流变抛光机理研究 [D]. 绵阳: 西南科技大学, 2023.CHENG Lei. Research on magnetorheological polishing mechanism of fused quartz based on electrolyte regulation [D]. Mianyang: Southwest University of Science and Technology, 2023. [12] 邓凤霞. 三聚磷酸钠电芬顿体系氧化效能强化及作用机制 [D]. 哈尔滨: 哈尔滨工业大学, 2020.DENG Fengxia. Enhancement of oxidation efficiency of sodium tripolyphosphate electrofenton system and its mechanism [D]. Harbin: Harbin Institute of Technology, 2020. [13] DO T M, BYUN J Y, KIM S H. An electro-Fenton system using magnetite coated metallic foams as cathode for dye degradation [J]. Catalysis Today,2017,295:48-55. doi: 10.1016/j.cattod.2017.05.016 [14] 张碧波, 陈剑, 冉启洋, 等. 柠檬酸改性芬顿对土壤中石油烃的去除效果 [J]. 湖南农业科学,2019(12):38-41. doi: 10.16498/j.cnki.hnnykx.2019.012.009ZHANG Bibo, CHEN Jian, RAN Qiyang, et al. Removal effect of citric acid modified Fenton on petroleum hydrocarbon in soil [J]. Hunan Agricultural Sciences,2019(12):38-41. doi: 10.16498/j.cnki.hnnykx.2019.012.009 -