CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细径金刚石线锯锯缝内切削液流场仿真研究

陈佳虎 葛培琪

陈佳虎, 葛培琪. 细径金刚石线锯锯缝内切削液流场仿真研究[J]. 金刚石与磨料磨具工程, 2024, 44(6): 781-788. doi: 10.13394/j.cnki.jgszz.2023.0235
引用本文: 陈佳虎, 葛培琪. 细径金刚石线锯锯缝内切削液流场仿真研究[J]. 金刚石与磨料磨具工程, 2024, 44(6): 781-788. doi: 10.13394/j.cnki.jgszz.2023.0235
CHEN Jiahu, GE Peiqi. Simulation study of cutting fluid flow field in kerf of fine diameter diamond wire saw[J]. Diamond & Abrasives Engineering, 2024, 44(6): 781-788. doi: 10.13394/j.cnki.jgszz.2023.0235
Citation: CHEN Jiahu, GE Peiqi. Simulation study of cutting fluid flow field in kerf of fine diameter diamond wire saw[J]. Diamond & Abrasives Engineering, 2024, 44(6): 781-788. doi: 10.13394/j.cnki.jgszz.2023.0235

细径金刚石线锯锯缝内切削液流场仿真研究

doi: 10.13394/j.cnki.jgszz.2023.0235
基金项目: 国家自然科学基金资助项目(52175418);山东省重大科技创新工程(2022CXGC010201)。
详细信息
    通讯作者:

    葛培琪,男,1963年生,教授。主要研究方向:金刚石线锯技术。E-mail: pqge@sdu.edu.cn

  • 中图分类号: TG58; TG74; O357

Simulation study of cutting fluid flow field in kerf of fine diameter diamond wire saw

  • 摘要: 随着工件大尺寸化及锯丝细线化,锯切加工过程中的锯缝越来越深且窄,切削液在锯切过程中无法充分发挥作用,对切片质量影响较大。基于计算流体力学(computational fluid dynamics,CFD)数值模拟,通过建立CFD锯缝模型,对金刚石线锯锯切加工材料时锯缝内切削液流场进行分析研究。仿真分析发现:在小尺寸锯缝内,随着走丝速度增大至25 m/s,切削液更能充分进入锯缝,在锯丝与工件接触区域及非接触区域充满液体后,接触区域流体压力在0.1790 MPa左右,非接触区域流体压力在0.1590 MPa左右;切削液黏度和表面张力在一定范围内的降低,有利于保证锯缝内切削液的相对饱和与稳定,同时可以使锯缝内切削液压力分布更为稳定。

     

  • 图  1  锯缝流场仿真几何模型

    Figure  1.  Geometric model of kerf flow field simulation

    图  2  仿真网格示意图

    Figure  2.  Schematic diagram of simulation grid

    图  3  锯缝不同位置示意图

    Figure  3.  Diagram of different positions of kerf

    图  4  不同走丝速度下锯缝内切削液体积分数云图

    Figure  4.  Integral number cloud map of cutting fluid in kerf at different wire speed

    图  5  锯丝锯切工件示意图

    Figure  5.  Schematic diagram of wire sawing workpiece

    图  6  不同走丝速度下锯丝与工件接触区域切削液压力变化曲线

    Figure  6.  Curve of cutting fluid pressure in contact area between saw wire and workpiece at different wire speed

    图  7  不同走丝速度下锯丝与工件非接触区域切削液压力变化曲线

    Figure  7.  Curve of cutting fluid pressure in non-contact area between saw wire and workpiece at different wire speed

    图  8  不同切削液物理属性下锯缝内切削液体积分数云图

    Figure  8.  Integral number cloud map of cutting fluid in kerf under different physical properties of cutting fluid

    图  9  不同切削液物理属性下锯丝与工件接触区域切削液压力变化曲线

    Figure  9.  Curve of cutting fluid pressure in contact area between saw wire and workpiece under different physicalproperties of cutting fluid

    图  10  不同切削液物理属性下锯丝与工件非接触区域切削液压力变化曲线

    Figure  10.  Curve of cutting fluid pressure in non-contact area between saw wire and workpiece under different physical properties of cutting fluid

    表  1  锯缝流场仿真几何模型参数

    Table  1.   Parameters of geometrical model for kerf flow field simulation

    参数取值
    锯缝长度 l / mm210
    芯线直径 dw / μm36
    锯缝宽度 Dw / μm60
    锯丝张紧力 F / N5.8
    下载: 导出CSV

    表  2  网格独立性验证结果

    Table  2.   Results of grid independence verification

    网格数量 N压力 P / Pa相对误差 S / %
    3 518 6809 000
    4 286 0649 3003.33
    5 581 6609 1501.67
    下载: 导出CSV

    表  3  切削液物理属性

    Table  3.   Physical properties of cutting fluid

    切削液 密度
    ρ/(kg·m−3)
    黏度
    Μ/(mPa·s)
    表面张力
    γ/(mN·m−1)
    与单晶硅表面
    接触角θ1/(°)
    与锯丝表面
    接触角θ2/(°)
    A 840.0 1.26 38.57 30 51
    B 850.5 1.20 36.06 27 37
    C 872.5 1.15 34.02 20 33
    D 900.3 1.12 33.08 13 21
    E 921.5 1.08 30.35 11 13
    下载: 导出CSV

    表  4  边界条件

    Table  4.   Boundary conditions

    区域类型参数
    入口速度入口速度为1.5 m/s,面积为1.5 mm × 0.4 mm
    出口压力出口表面压力为0
    工件外表面固定壁面无滑移
    锯缝内表面固定壁面无滑移
    锯丝表面移动壁面无滑移,速度为10~30 m/s
    下载: 导出CSV
  • [1] 葛培琪, 陈自彬, 王沛志. 单晶硅切片加工技术研究进展 [J]. 金刚石与磨料磨具工程,2020,40(4):12-18. doi: 10.13394/j.cnki.jgszz.2020.4.0002

    GE Peiqi, CHEN Zibin, WANG Peizhi. Review of monocrystalline silicon slicing technology [J]. Diamond & Abrasives Engineering,2020,40(4):12-18. doi: 10.13394/j.cnki.jgszz.2020.4.0002
    [2] BHAGAVAT S, KAO I. A finite element analysis of temperature variation in silicon wafers during wiresaw slicing [J]. International Journal of Machine Tools and Manufacture,2008,48(1):95-106. doi: 10.1016/j.ijmachtools.2007.07.009
    [3] MÖLLER H J. Basic mechanisms and models of multi-wire sawing [J]. Advanced Engineering Materials,2004,6(7):501-513. doi: 10.1002/adem.200400578
    [4] ZHU L Q, KAO I. Galerkin-based modal analysis on the vibration of wire–slurry system in wafer slicing using a wiresaw [J]. Journal of Sound and Vibration,2005,283(3/4/5):589-620. doi: 10.1016/j.jsv.2004.04.018
    [5] GE P Q, SANG B, GAO Y F. The numerical analysis on action mechanism of slurry in free abrasive wiresaw slicing [J]. Key Engineering Materials,2007(359/360):455-459. doi: 10.4028/www.scientific.net/KEM.359-360.455
    [6] ISHIKAWA K I, SUWABE H, ITOH S I, et al. A basic study of the behavior of slurry action at multi-wire saw [J]. Key Engineering Materials,2003(238/239):89-92. doi: 10.4028/www.scientific.net/KEM.238-239.89
    [7] NASSAUER B, HESS A, KUNA M. Numerical and experimental investigations of micromechanical processes during wire sawing [J]. International Journal of Solids and Structures,2014,51(14):2656-2665. doi: 10.1016/j.ijsolstr.2014.03.040
    [8] 林麟. 磨粒线切割中的流体行为研究[D]. 厦门: 华侨大学, 2020.

    LIN Lin. Study on fluid behavior in abrasive wire cutting [D]. Xiamen: Huaqiao University, 2020.
    [9] 郑忠利. 静电喷雾金刚石线锯切割液吸附特性及切割实验研究[D]. 杭州: 浙江工业大学, 2020.

    ZHENG Zhongli. Adsorption characteristics and cutting experiments of electrostatic spray diamond wire saw cutting fluid [D]. Hangzhou: Zhejiang University of Technology, 2020.
    [10] QIU J, LI X F, ZHANG S B. Research on an improved bath cooling and lubrication method for diamond wire sawing [J]. The International Journal of Advanced Manufacturing Technology,2021,112:1-10. doi: 10.1007/s00170-020-06195-9
    [11] 施郁虎. 基于金刚石线锯的微量润滑与工艺研究[D]. 镇江: 江苏科技大学, 2020.

    SHI Yuhu. Micro lubrication and process research based on diamond wire saw [D]. Zhenjiang: Jiangsu University of Science and Technology, 2020.
    [12] 宁培桓, 周建伟, 刘玉岭, 等. Si单晶片切削液挂线性能的研究 [J]. 半导体技术,2008,33(11):981-984. doi: 10.3969/j.issn.1003-353X.2008.11.011

    NING Peihuan, ZHOU Jianwei, LIU Yuling, et al. Study on the capability of adhesion of monocrystalline Si wafer cutting fluid [J]. Semiconductor Technology,2008,33(11):981-984. doi: 10.3969/j.issn.1003-353X.2008.11.011
    [13] 冯勇, 王晓宇, 徐振钦. 单晶硅料摆辅助多金刚线切片的锯切力模型研究 [J]. 机械工程学报,2021,57(19):260-272. doi: 10.3901/JME.2021.19.260

    FENG Yong, WANG Xiaoyu, XU Zhenqin. Research on cutting force model of diamond wire saw with single crystal silicon swing [J]. Journal of Mechanical Engineering,2021,57(19):260-272. doi: 10.3901/JME.2021.19.260
    [14] 章梓雄, 董曾南. 黏性流体力学[M]. 北京: 清华大学出版社, 2011.

    ZHANG Zixiong, DONG Zengnan. Viscous fluid mechanics [M]. Beijing: Tsinghua University Press, 2011.
    [15] 任玉新, 陈海昕. 计算流体力学基础[M]. 北京: 清华大学出版社, 2006.

    REN Yuxin, CHEN Haixin. Fundamentals of computational fluid dynamics [M]. Beijing: Tsinghua University Press, 2006.
    [16] L·普朗特. 流体力学概论[M]. 郭永怀, 陆士嘉, 译. 北京: 科学出版社, 1984.

    L PRANDTL. Introduction to fluid mechanics [M]. GUO Yonghuai, LU Shijia, translated. Beijing: Science Press, 1984.
    [17] 雷娟棉, 谭朝明. 基于Transition SST模型的高雷诺数圆柱绕流数值研究 [J]. 北京航空航天大学学报,2017,43(2):207-217. doi: 10.13700/j.bh.1001-5965.2016.0098

    LEI Juanmian, TAN Zhaoming. Numerical simulation for flow around circular cylinder at high Reynolds number based on Transition SST model [J]. Journal of Beijing University of Aeronautics and Astronautics,2017,43(2):207-217. doi: 10.13700/j.bh.1001-5965.2016.0098
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  644
  • HTML全文浏览量:  254
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-07
  • 修回日期:  2023-12-21
  • 录用日期:  2024-01-16
  • 网络出版日期:  2024-01-16
  • 刊出日期:  2024-12-06

目录

    /

    返回文章
    返回