CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温微磨料气射流加工的硬脆材料耐冲蚀性能对比

徐朋冲 孙玉利 张桂冠 康诗杰 卢文壮 孙业斌 左敦稳

徐朋冲, 孙玉利, 张桂冠, 康诗杰, 卢文壮, 孙业斌, 左敦稳. 低温微磨料气射流加工的硬脆材料耐冲蚀性能对比[J]. 金刚石与磨料磨具工程, 2024, 44(5): 665-674. doi: 10.13394/j.cnki.jgszz.2023.0220
引用本文: 徐朋冲, 孙玉利, 张桂冠, 康诗杰, 卢文壮, 孙业斌, 左敦稳. 低温微磨料气射流加工的硬脆材料耐冲蚀性能对比[J]. 金刚石与磨料磨具工程, 2024, 44(5): 665-674. doi: 10.13394/j.cnki.jgszz.2023.0220
XU Pengchong, SUN Yuli, ZHANG Guiguan, KANG Shijie, LU Wenzhuang, SUN Yebin, ZUO Dunwen. Comparison of erosion resistance of hard and brittle materials processed by low-temperature micro-abrasive gas jet[J]. Diamond & Abrasives Engineering, 2024, 44(5): 665-674. doi: 10.13394/j.cnki.jgszz.2023.0220
Citation: XU Pengchong, SUN Yuli, ZHANG Guiguan, KANG Shijie, LU Wenzhuang, SUN Yebin, ZUO Dunwen. Comparison of erosion resistance of hard and brittle materials processed by low-temperature micro-abrasive gas jet[J]. Diamond & Abrasives Engineering, 2024, 44(5): 665-674. doi: 10.13394/j.cnki.jgszz.2023.0220

低温微磨料气射流加工的硬脆材料耐冲蚀性能对比

doi: 10.13394/j.cnki.jgszz.2023.0220
基金项目: 国家自然科学基金面上项目(52075254)。
详细信息
    作者简介:

    孙玉利,男,1970年生,教授、博士生导师。主要研究方向:精密超精密加工技术与装备、现代表面工程技术。E-mail:sunyuli@nuaa.edu.cn

  • 中图分类号: TG73; TG58

Comparison of erosion resistance of hard and brittle materials processed by low-temperature micro-abrasive gas jet

  • 摘要: 低温微磨料气射流加工硬脆材料时,其变脆易被冲蚀去除。对碳化硅(SiC)、氮化硅(Si3N4)、钇稳定氧化锆(YSZ)、99氧化铝(99 Al2O3)、石英玻璃5种硬脆材料进行低温微磨料气射流加工对比实验,探究加工压力、冲击加工角度及加工次数等工艺参数对5种硬脆材料的冲蚀去除率、低温冲蚀槽三维形貌及表面轮廓的影响,优选出低温下耐冲蚀性能良好的硬脆材料。结果表明:随着加工压力和加工次数增加,5种材料的冲蚀去除率都不断增大;随着冲击加工角度变化,5种材料的低温冲蚀槽体积也在变化,并在加工角度为90°的垂直加工角度附近时达到最大;在相同的加工工艺参数下,Si3N4材料的冲蚀去除率最小,其最大低温冲蚀槽深度只有20 μm,SiC材料的与其相差不大,YSZ和99 Al2O3的冲蚀去除率依次增大,但石英玻璃材料的冲蚀去除率最大且远大于其他4种材料的。同时,Si3N4的低温冲蚀槽槽形不明显,且其表面较平整,去除量最小,因而耐冲蚀性能最佳。

     

  • 图  1  平均粒径为25 μm的Al2O3磨料SEM形貌

    Figure  1.  SEM morphology of Al2O3 abrasive with an average particle size of 25 μm

    图  2  低温微磨料气射流加工装置

    Figure  2.  Low temperature micro abrasive air jet machining device

    图  3  实验加工区域示意图

    Figure  3.  Schematic diagram of experimental processing area

    图  4  微磨料气射流加工示意图

    Figure  4.  Schematic diagram of micro-abrasive gas jet machining

    图  5  5种材料低温冲蚀槽的体积随加工压力、冲击加工角度及加工次数的变化趋势

    Figure  5.  Variation trend of volumes of low-temperature erosion grooves for five materials with processing pressure, impact processing angle and processing frequency

    图  6  5种材料槽的3D光学轮廓

    Figure  6.  3D optical profiles of five material slots

    图  7  低温微磨料气射流加工的5种材料冲蚀轮廓对比

    Figure  7.  Comparison of erosion contours of five materials processed by low temperature micro abrasive air jet

    表  1  5种材料的部分力学性能[16]

    Table  1.   Partial mechanical properties of five materials[16]

    材料名称抗弯强度

    σ / MPa
    断裂韧性
    KIC / (MPa·m1/2)
    石英玻璃 61.2 0.8
    YSZ 646.0 7.5
    99 Al2O3 370.0 5.3
    Si3N4 930.0 6.8
    SiC 500.0 5.5
    下载: 导出CSV

    表  2  实验中固定的加工参数

    Table  2.   Fixed processing parameters in the experiment

    实验参数类型或取值
    气射流喷嘴直径 dN / μm 460
    液氮射流喷嘴直径 d2 / mm 3
    气射流和液氮喷嘴夹角 θ1 / (°) 10
    实验气体 干燥的压缩空气
    液氮压力 p1 / MPa 0.2
    试样表面温度 T / K 77
    磨料粒径 d50 / μm 25
    磨料种类 Al2O3
    加工速度 vp / (mm·s−1) 5
    加工距离 d / mm 2
    下载: 导出CSV

    表  3  全因子实验的参数设计

    Table  3.   Parameter design of full factor experiment

    实验参数水平数取值
    冲击加工角度 α / (°) 4 30,50,70,90
    加工压力 p / MPa 3 0.2,0.4,0.6
    加工次数 n / 次 4 1,3,5,7
    下载: 导出CSV
  • [1] ZARAGOZA-GRANADOS J, GALLARDO-HERNÁNDEZ E A, VITE-TORRES M, et al. Erosion behaviour of AISI 310 stainless steel at 450 °C under turbulent swirling impinging jets [J]. Wear,2019,426/427:637-642. doi: 10.1016/j.wear.2019.01.076
    [2] DE LA ROSA SEDANO C S, VITE-TORRES M, GALLARDO-HERNÁNDEZ M A, et al. Effect of tangential velocity on erosion of ASTM A-106 grade B steel pipe under turbulent swirling impinging jet [J]. Tribology International,2017,113:500-506. doi: 10.1016/j.triboint.2017.01.011
    [3] ZHANG M, LI D, KANG Y, et al. Experimental study on the rock erosion performance of a pulsed abrasive supercritical CO2 jet [J]. Journal of Petroleum Science and Engineering,2021,201:108489. doi: 10.1016/j.petrol.2021.108489
    [4] 汤张喆. 伺服零件交叉孔磨粒流去毛刺技术研究 [D]. 南京: 南京航空航天大学, 2021.

    TANG Zhangzhe. Research on abrasive honing deburring technology of servo parts intersecting holes [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021.
    [5] 杨博均, 魏木孟, 姚敬华, 等. 基材不同除锈处理工艺对涂层性能影响的优劣对比研究 [J]. 中国涂料,2022,37(8):70-74. doi: 10.13531/j.cnki.china.coatings.2022.08.014

    YANG Bojun, WEI Mumeng, YAO Jinghua, et al. A comparative study on the effects of different substrate derusting processes on coatings properties [J]. China Coatings,2022,37(8):70-74. doi: 10.13531/j.cnki.china.coatings.2022.08.014
    [6] AVCI H I, CAKIR O. Abrasive water-jet applications in 6 mm flat glass cuttings [J]. Materials Today: Proceedings,2023,80(1):104-109. doi: 10.1016/j.matpr.2022.10.252
    [7] CHEN C, LIU Y, TANG J, et al. Effect of nozzle pressure ratios on the flow and distribution of abrasive particles in abrasive air jet machining [J]. Powder Technology,2022,397:117114. doi: 10.1016/j.powtec.2022.117114
    [8] 李全来. 微磨料气射流成形加工表面粗糙度的研究 [J]. 机械工程师,2014(12):7-10. doi: 10.3969/j.issn.1002-2333.2014.12.003

    LI Quanlai. Surface roughness analysis on micro abrasive air jet forming technology [J]. Mechanical Engineer,2014(12):7-10. doi: 10.3969/j.issn.1002-2333.2014.12.003
    [9] SCHÜLER M, DADGAR M, HERRIG T. Influence of abrasive properties on erosion in waterjet machining [J]. Procedia CIRP,2021,102:375-380. doi: 10.1016/j.procir.2021.09.064
    [10] 钱炳坤, 孙玉利, 张桂冠, 等. 低温微磨料气射流加工PDMS传热仿真及实验研究 [J]. 南京航空航天大学学报,2022,54(1):163-171. doi: 10.16356/j.1005-2615.2022.01.019

    QIAN Bingkun, SUN Yuli, ZHANG Guiguan, et al. Heat transfer simulation and experimental research of cryogenic micro-abrasive air jet machining PDMS [J]. Journal of Nanjing University of Aeronautics and Astronautics,2022,54(1):163-171. doi: 10.16356/j.1005-2615.2022.01.019
    [11] HU Y, DAI Q, HUANG W, et al. Tapered mask and its effect on the fluid flow and machining efficiency of a multiphase jet [J]. Journal of Manufacturing Processes,2020,50(4):467-474. doi: 10.1016/j.jmapro.2020.01.006
    [12] 胡焰. 基于气液固混合的磨料射流加工系统及实验研究 [D]. 南京: 南京航空航天大学, 2019.

    HU Yan. Abrasive jet processing system based on gas-liquid-solid mixing and experimental study [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
    [13] NAKANISHI Y, NAKASHIMA Y, HEIDE D V E. Microstructuring glass surfaces using a combined masking and microslurry-jet machining process [J]. Precision Engineering,2021,67:172-177. doi: 10.1016/j.precisioneng.2020.09.018
    [14] BELLOY E, THURRE S, WALCKIERS E, et al. The introduction of powder blasting for sensor and microsystem applications [J]. Sensors & Actuators A: Physical,2020,84(3):330-337. doi: 10.1016/S0924-4247(00)00390-3
    [15] 王学亮, 王瑞国, 刘立艳, 等. 几种常见耐磨耐冲击材料的综合性能对比分析 [J]. 山东工业技术,2020(4):46-52. doi: 10.16640/j.cnki.37-1222/t.2020.04.006

    WANG Xueliang, WANG Ruiguo, LIU Liyan, et al. Comprehensive performance analysis of some wear-resisting and impact resistant materials [J]. Journal of Shandong Industrial Technology,2020(4):46-52. doi: 10.16640/j.cnki.37-1222/t.2020.04.006
    [16] 陈娟. 低温下氧化物陶瓷的微观结构、断裂机理与性能研究 [D]. 北京: 清华大学, 2016.

    CHEN Juan. Research on the microstructure and fracture mechanism of oxide structural ceramics at cryogenic temperatures [D]. Beijing: Tsinghua University, 2016.
    [17] 钱炳坤, 孙玉利, 张桂冠, 等. 低温微磨料气射流加工微流道专用机床 [J]. 南京航空航天大学学报,2021,53(1):93-100. doi: 10.16356/j.1005-2615.2021.01.010

    QIAN Bingkun, SUN Yuli, ZHANG Guiguan, et al. Micro-channel special machine tool for cryogenic micro-abrasive air jet machining [J]. Journal of Nanjing University of Aeronautics and Astronautics,2021,53(1):93-100. doi: 10.16356/j.1005-2615.2021.01.010
    [18] 刘旭, 孙玉利, 张桂冠, 等. 液氮射流冲击冷却聚二甲基硅氧烷的温度场仿真和实验研究 [J]. 中国机械工程,2022,33(18):2161-2171. doi: 10.3969/j.issn.1004-132X.2022.18.002

    LIU Xu, SUN Yuli, ZHANG Guiguan, et al. Simulation and experimental research about temperature fields of PDMS cooled by liquid nitrogen jet impingement [J]. China Mechanical Engineering,2022,33(18):2161-2171. doi: 10.3969/j.issn.1004-132X.2022.18.002
    [19] SLIKKERVEER P J, BOUTEN P C P, VELD F H, et al. Erosion and damage by sharp particles [J]. Wear,1998,217(2):237-250. doi: 10.1016/S0043-1648(98)00187-2
    [20] ZHANG G, SUN Y, GAO H, et al. PDMS material embrittlement and its effect on machinability characteristics by cryogenic abrasive air-jet machining [J]. Journal of Manufacturing Processes,2021,67:116-127. doi: 10.1016/j.jmapro.2021.04.057
    [21] TARODIYA R, LEVY A. Surface erosion due to particle-surface interactions - A review [J]. Powder Technology,2021,387:527-555. doi: 10.1016/j.powtec.2021.04.055
    [22] RICARDO G, SOMMERFELD M. Experimental evaluation of surface roughness variation of ductilematerials due to solid particle erosion [J]. Advanced Powder Technology,2020,31(9):3790-3816. doi: 10.1016/j.apt.2020.07.023
    [23] ZHANG G, SUN Y L, GAO H, et al. A theoretical and experimental investigation of particle embedding and erosion behaviour of PDMS in micro-abrasive air-jet machining [J]. Wear,2021(486/487):204118. doi: 10.1016/j.wear.2021.204118
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-12
  • 修回日期:  2023-11-10
  • 录用日期:  2023-11-22
  • 刊出日期:  2024-10-01

目录

    /

    返回文章
    返回