CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MPCVD金刚石涂层均匀性生长的数值模拟与实验

张斌华 简小刚

张斌华, 简小刚. MPCVD金刚石涂层均匀性生长的数值模拟与实验[J]. 金刚石与磨料磨具工程, 2024, 44(2): 161-168. doi: 10.13394/j.cnki.jgszz.2023.0211
引用本文: 张斌华, 简小刚. MPCVD金刚石涂层均匀性生长的数值模拟与实验[J]. 金刚石与磨料磨具工程, 2024, 44(2): 161-168. doi: 10.13394/j.cnki.jgszz.2023.0211
ZHANG Binhua, JIAN Xiaogang. Numerical simulation and experiment of uniform growth of MPCVD diamond coating[J]. Diamond & Abrasives Engineering, 2024, 44(2): 161-168. doi: 10.13394/j.cnki.jgszz.2023.0211
Citation: ZHANG Binhua, JIAN Xiaogang. Numerical simulation and experiment of uniform growth of MPCVD diamond coating[J]. Diamond & Abrasives Engineering, 2024, 44(2): 161-168. doi: 10.13394/j.cnki.jgszz.2023.0211

MPCVD金刚石涂层均匀性生长的数值模拟与实验

doi: 10.13394/j.cnki.jgszz.2023.0211
基金项目: 国家自然科学基金(50275095,51275358)。
详细信息
    作者简介:

    张斌华,男,1998年生,硕士。主要研究方向:MPCVD金刚石涂层制备与性能检测。E-mail:zhangbh@tongji.edu.cn

    通讯作者:

    简小刚,男,1975年生,博士、副教授。主要研究方向:涂层制备与性能检测。E-mail:jianxgg@tongji.edu.cn

  • 中图分类号: TQ164; TG71

Numerical simulation and experiment of uniform growth of MPCVD diamond coating

  • 摘要: 基于多物理场耦合仿真软件COMSOL Multiphysics的微波等离子体模块建立MPCVD反应腔内氢气等离子体的仿真模型,研究基底外侧增设的环状钼支架与基底的不同高度差Δh对基底表面等离子体分布的影响。采用变异系数对等离子体分布的均匀性进行定量分析,并用SEM对金刚石涂层表面的微观形貌进行表征。结果表明:当Δh=0 mm时,等离子体分布的均匀性最佳,变异系数为3.998%,金刚石涂层的晶粒分布及大小的均匀性相较于无钼支架时的明显提升;当Δh<0 mm时,等离子体分布的均匀性随Δh增大而提升,变异系数由10.265%降至3.998%;当Δh>0 mm时,等离子体分布的均匀性不增反降,变异系数升高至10.048%。此外,当Δh=−2.0 mm时,基底表面的等离子体密度约下降20%,不利于金刚石涂层生长。

     

  • 图  1  圆柱形金属谐振腔式MPCVD装置示意图

    Figure  1.  Schematic diagram of cylindrical metal resonant cavity MPCVD device

    图  2  基片台简化模型

    Figure  2.  Simplified model of substrate platform

    图  3  电子数密度分布图

    Figure  3.  Number density distribution of electrons

    图  4  基底径向电子数密度分布图

    Figure  4.  Radial number density distribution of electrons on the substrate surface

    图  5  电子数密度的变异系数

    Figure  5.  Coefficients of variation of electron number density

    图  6  沉积时的基底表面照片

    Figure  6.  Photos of the substrate surface during deposition

    图  7  对照组和实验组的金刚石涂层不同区域的SEM图像

    Figure  7.  SEM images of different areas of diamond coating in control group and experimental group

    表  1  原始数据及电子数密度的变异系数

    Table  1.   Original data and coefficients of variation of electron number density

    高度差 Δh / mm标准差 $\sigma $/ m−3平均值 $\mu $/ m−3变异系数 ${C_{\rm{v}}}$/%
    −2.03.918 × 10173.817 × 101810.265
    −1.02.842 × 10173.801 × 10187.477
    −0.52.233 × 10173.649 × 10186.119
    01.516 × 10173.792 × 10183.998
    0.51.504 × 10173.497 × 10184.301
    1.03.131 × 10173.116 × 101810.048
    下载: 导出CSV

    表  2  实验工艺参数

    Table  2.   Process parameters

    参数形核生长
    基底温度 θ / ℃625800
    CH4流量 l1 / sccm5.04.3
    CO2流量 l2 / sccm6.00
    Ar流量 l3 / sccm150
    H2流量 l4 / sccm200200
    压力 p / kPa88
    时间 t / h27
    下载: 导出CSV

    表  3  沉积前后基底厚度

    Table  3.   Substrate thickness before and after deposition

    测量区域实验前厚度
    d1 / mm
    沉积后厚度
    d2 / mm
    厚度差
    Δd / μm
    对照组基底中心2.0012.03332
    对照组基底边缘2.0062.04438
    实验组基底中心1.9972.02124
    实验组基底边缘2.0022.02826
    下载: 导出CSV
  • [1] LI G, RAHIM M Z, PAN W, et al. The manufacturing and the application of polycrystalline diamond tools: A comprehensive review [J]. Journal of Manufacturing Processes,2020,56(5):400-416.
    [2] BOLSHAKOV A P, RALCHENKO V G, YUROV V Y, et al. Enhanced deposition rate of polycrystalline CVD diamond at high microwave power densities [J]. Diamond & Related Materials,2019(97):107466.
    [3] CHENG H Y, YANG C Y, YANG L C, et al. Effective thermal and mechanical properties of polycrystalline diamond films [J]. Journal of Applied Physics,2018,123(16):165105. doi: 10.1063/1.5016919
    [4] DAR M A, KIM Y S, ANSARI S G, et al. Comparative study of diamond films grown on silicon substrate using microwave plasma chemical vapor deposition and hot-filament chemical vapor deposition technique [J]. Korean Journal of Chemical Engineering,2006,22(5):770-773.
    [5] NAD S, GU Y, ASMUSSEN J. Growth strategies for large and high quality single crystal diamond substrates [J]. Diamond & Related Materials,2015(60):26-34.
    [6] WANG B, WENG J, WANG Z T, et al. Investigation on the influence of the gas flow mode around substrate on the deposition of diamond films in an overmoded MPCVD reactor chamber [J]. Vacuum,2020,182(1):109659.
    [7] 简小刚, 雷强, 张奎林. 热丝CVD金刚石涂层温度场补偿优化研究 [J]. 金刚石与磨料磨具工程,2016,36(6):15-19, 24.

    JIAN Xiaogang, LEI Qiang, ZHANG Kuilin. Optimization of HFCVD diamond coating deposition temperature compensating [J]. Diamond & Abrasives Engineering,2016,36(6):15-19, 24.
    [8] LI L, ZHAO C, ZHANG S, et al. Simulation of diamond synthesis by microwave plasma chemical vapor deposition with multiple substrates in a substrate holder [J]. Journal of Crystal Growth,2022(579):126457. doi: 10.1016/j.jcrysgro.2021.126457
    [9] ASHKIHAZI E E, SEDOV V S, SOVYK D N, et al. Plateholder design for deposition of uniform diamond coatings on WC-Co substrates by microwave plasma CVD for efficient turning application [J]. Diamond & Related Materials,2017(75):169-175.
    [10] 王凤英, 孟宪明, 唐伟忠, 等. 圆柱谐振腔式MPCVD装置中氢、氩微波等离子体分布规律的数值模拟 [J]. 真空与低温,2008(3):157-163. doi: 10.3969/j.issn.1006-7086.2008.03.007

    WANG Fengying, MENG Xianming, TANG Weizhong, et al. Simulation of hydrogen and argon microwave plasmas in a cylindrical microwave plasma chemical vapor deposition reactor [J]. Vacuum & Cryogenics,2008(3):157-163. doi: 10.3969/j.issn.1006-7086.2008.03.007
    [11] 安康, 刘小萍, 李晓静, 等. 新型高功率MPCVD金刚石膜装置的数值模拟与实验研究 [J]. 人工晶体学报,2015,44(6):1544-1550. doi: 10.3969/j.issn.1000-985X.2015.06.022

    AN Kang, LIU Xiaoping, LI Xiaojing, et al. Numerical simulation and experimental study of a novel high-power microwave plasma CVD reactor for diamond films deposition [J]. Journal of Synthetic Crystals,2015,44(6):1544-1550. doi: 10.3969/j.issn.1000-985X.2015.06.022
    [12] HASSOUNI K, SILVA F, GICQUEL A. Modelling of diamond deposition microwave cavity generated plasmas [J]. Journal of Physics D:Applied Physics,2010,43(15):153001. doi: 10.1088/0022-3727/43/15/153001
    [13] DERKAOUI N, ROND C, GRIES T, et al. Determining electron temperature and electron density in moderate pressure H2/CH4 microwave plasma [J]. Journal of Physics D:Applied Physics,2014,47(20):205201. doi: 10.1088/0022-3727/47/20/205201
    [14] MESBAHI A, SILVA F, FARHAT S, et al. Hydrodynamics effects in high power density microwave plasma diamond growth reactors [J]. Journal of Physics:D Applied Physics,2013,46(38):385502-385516. doi: 10.1088/0022-3727/46/38/385502
    [15] YAMADA H, CHAYAHARA A, MOKUNO Y. Simplified description of microwave plasma discharge for chemical vapor deposition of diamond [J]. Journal of Applied Physics,2007,101(6):063302. doi: 10.1063/1.2711811
    [16] KEATCH R. Principles of plasma discharges and material processing[M]. New York: Microelectronics Journal, 1996: 804.
    [17] FÜNER M, WILD C, KOIDL P. Simulation and development of optimized microwave plasma reactors for diamond deposition [J]. Surface and Coatings Technology,1999(116/117/118/119):853-862.
    [18] PLEULER E, WILD C, FÜNER M, et al. The CAP-reactor, a novel microwave CVD system for diamond deposition [J]. Diamond and Related Materials,2002,11(3):467-471.
    [19] VIEHLAND L A, MASON E A. Transport properties of gaseous ions over a wide energy range 4 [J]. Atomic Data and Nuclear Data Tables,1995,60(1):37-95. doi: 10.1006/adnd.1995.1004
    [20] SCOTT C D, FARHAT S, GICQUEL A, et al. Determining electron temperature and density in a hydrogen microwave plasma [J]. Journal of Thermophysics and Heat Transfer,1996,10(3):426-435. doi: 10.2514/3.807
    [21] PLANO L S, SURENDRA M, GRAVES D B. Self-consistent dc glow-discharge simulations applied to diamond film deposition reactors [J]. Journal of Applied Physics,1992,71(10):5189-5198. doi: 10.1063/1.350575
    [22] 邹帅, 唐中华, 吉亮亮, 等. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量 [J]. 物理学报,2012,61(7):075204. doi: 10.7498/aps.61.075204

    ZOU Shuai, TANG Zhonghua, JI Liangliang, et al. Application of floating microwave resonator probe to the measurement of electron density in electronegative capacitively coupled plasma [J]. Acta Physica Sinica,2012,61(7):075204. doi: 10.7498/aps.61.075204
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  158
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-01
  • 修回日期:  2023-11-23
  • 网络出版日期:  2023-12-11
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回