CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于小位移旋量理论的六面顶压机顶锤对中精度分析

王良文 董巳洁 司亮 汪曙光 谢贵重 杜文辽 李轲 鲁海霞

王良文, 董巳洁, 司亮, 汪曙光, 谢贵重, 杜文辽, 李轲, 鲁海霞. 基于小位移旋量理论的六面顶压机顶锤对中精度分析[J]. 金刚石与磨料磨具工程, 2024, 44(6): 733-743. doi: 10.13394/j.cnki.jgszz.2023.0202
引用本文: 王良文, 董巳洁, 司亮, 汪曙光, 谢贵重, 杜文辽, 李轲, 鲁海霞. 基于小位移旋量理论的六面顶压机顶锤对中精度分析[J]. 金刚石与磨料磨具工程, 2024, 44(6): 733-743. doi: 10.13394/j.cnki.jgszz.2023.0202
WANG Liangwen, DONG Sijie, SI Liang, WANG Shuguang, XIE Guizhong, DU Wenliao, LI Ke, LU Haixia. Analysis of anvil centering accuracy of cubic press based on small displacement torsor theory[J]. Diamond & Abrasives Engineering, 2024, 44(6): 733-743. doi: 10.13394/j.cnki.jgszz.2023.0202
Citation: WANG Liangwen, DONG Sijie, SI Liang, WANG Shuguang, XIE Guizhong, DU Wenliao, LI Ke, LU Haixia. Analysis of anvil centering accuracy of cubic press based on small displacement torsor theory[J]. Diamond & Abrasives Engineering, 2024, 44(6): 733-743. doi: 10.13394/j.cnki.jgszz.2023.0202

基于小位移旋量理论的六面顶压机顶锤对中精度分析

doi: 10.13394/j.cnki.jgszz.2023.0202
基金项目: 国家自然科学基金(52075500; 52275138; 52475289); 河南省揭榜挂帅重大科技项目(211110220200); 河南省科技攻关项目(232102221033); 河南省重点研发专项(231111231200); 河南省研究生教育改革与质量提升工程项目(YJS2024AL029)。
详细信息
    作者简介:

    王良文,男,1963年生,教授、博士生导师。主要研究方向:仿生机器人、机器人机械学、智能装备。E-mail: w_liangwen@sina.com

  • 中图分类号: TH6; TQ164

Analysis of anvil centering accuracy of cubic press based on small displacement torsor theory

  • 摘要: 为了提升金刚石合成装备六面顶压机顶锤的对中精度,开展六面顶压机铰链梁的工作腔体装配误差分析。首先,基于小位移旋量(small displacement torsor,SDT)理论,建立要素采用不同公差原则时的金刚石压机铰链梁装配公差模型;其次,利用空间矢量表示三维尺寸链,基于空间矢量环叠加原理推导出表示铰链梁活塞顶锤运动位姿的封闭环尺寸及其变动计算模型,进而得到其底、左、上顶锤中心轴线与各自顶锤外端面交点可能的误差范围;最后,比较三维公差分析得到的单个铰链梁活塞顶锤位姿累积闭环误差FR与一维尺寸链分析得到的类似误差X。结果表明:由于FR的组成环要多于X的组成环,其结果更能准确地表示铰链梁系统的误差传递结果,且FR[−1.005, 1.005]表示的误差范围要大于X[−1.000, 0.780]表示的误差范围,验证了该方法对装配公差分析的优越性和准确性。同时,通过筛选试验设计(Plackett-Burman design,PBD)筛选出对单个铰链梁活塞顶锤位姿封闭环影响较显著的变量,为合理分配压机铰链梁的加工精度提供了理论基础,有利于保障金刚石压机顶锤的对中精度,合理分配压机铰链梁相关结构配合公差及各部件的容差,并优化设备的加工成本。

     

  • 图  1  矢量的空间表示

    Figure  1.  Spatial representation of vectors

    图  2  六面顶压机的部装简图及部分组成零件

    Figure  2.  Partly assembly sketch of the cubic anvil press and part of components

    图  3  铰链梁装配关系

    Figure  3.  Hinge beam assembly relation

    图  4  左铰链梁液压缸与活塞的装配简图

    Figure  4.  Assembly diagram of left hinge beam hydraulic cylinder and piston

    图  5  底、左、上铰链梁装配简图

    Figure  5.  Assembly diagram of bottom, left and upper hinge beams

    图  6  液压缸活塞顶锤轴线与顶锤外端面交点的误差示意图

    Figure  6.  Error diagram of intersection point between axial line of hydraulic cylinder piston and outer end face of anvil in each hydraulic cylinder piston

    图  7  一维尺寸链

    Figure  7.  One dimensional chain

    表  1  典型几何公差带的SDT模型及其矢量约束[11]

    Table  1.   SDT model and its vector description for typical geometric tolerance zones[11]

    公差带公差带形状SDT模型约束
    圆柱面$ \left[ {\begin{array}{*{20}{c}} u&v&0 \\ {\Delta \alpha }&{\Delta \beta }&0 \end{array}} \right] $$ \begin{gathered} u = \left[ { - \frac{t}{2},\frac{t}{2}} \right],v = \left[ { - \frac{t}{2},\frac{t}{2}} \right],\Delta \alpha = \left[ { - \frac{t}{L},\frac{t}{L}} \right] \\ \Delta \beta = \left[ { - \frac{t}{L},\frac{t}{L}} \right] \\ {\left( {u + \frac{{\Delta \alpha \cdot L}}{2}} \right)^2} + {\left( {v + \frac{{\Delta \beta \cdot L}}{2}} \right)^2} = \left[ {0,{{\left( {\frac{t}{2}} \right)}^2}} \right] \\ \end{gathered} $
    两平行平面
    $\left[ {\begin{array}{*{20}{c}} 0&{\text{0}}&\omega \\ {\Delta \alpha }&{\Delta \beta }&0 \end{array}} \right]$$ \begin{gathered} \omega = \left[ { - \frac{t}{2},\frac{t}{2}} \right],\Delta \alpha = \left[ { - \frac{t}{2},\frac{t}{2}} \right],\Delta \beta = \left[ { - \frac{t}{{{L_2}}},\frac{t}{{{L_2}}}} \right] \\ \left| \omega \right| + \left| {\frac{{\Delta \alpha \cdot {L_1}}}{2}} \right| + \left| {\frac{{\Delta \beta \cdot {L_2}}}{2}} \right| = \left[ {0,\frac{t}{2}} \right] \\ \end{gathered} $
    下载: 导出CSV

    表  2  组成环的SDT模型及其约束

    Table  2.   SDT models and its constraints for constituting rings

    各环尺寸及其$ {\alpha }_{{i}}、{\beta }_{{i}}、{\gamma }_{i} $ SDT模型 约束
    $\begin{gathered} {a_1} = 0 \\ {\alpha _1} = {90^\circ},{\beta _1} = {90^\circ},{\gamma _1} = {0^\circ} \\ \end{gathered} $ $\left[ {\begin{array}{*{20}{c}} 0&0&\omega \\ {\Delta \alpha }&{\Delta \beta }&0 \end{array}} \right]$ $\begin{gathered} \omega = \left[ { - \frac{{0.3}}{2},\frac{{0.3}}{2}} \right] \\ \Delta \alpha = \Delta \beta = \left[ { - \frac{{0.3}}{{680}},\frac{{0.3}}{{680}}} \right] \\ \end{gathered} $
    $\begin{gathered} {a_2} = 650_{ - 0.5}^{ + 0.5} \\ {\alpha _2} = {90^\circ},{\beta _2} = {90^\circ},{\gamma _2} = {0^\circ} \\ \end{gathered} $ $\left[ {\begin{array}{*{20}{c}} 0&0&\omega \\ 0&0&0 \end{array}} \right]$ $\omega = \left[ { - 0.5,0.5} \right]$
    $ \begin{gathered} {a_3} = 95_0^{0.025} \\ {\alpha _3} = {90^\circ},{\beta _3} = {90^\circ},{\gamma _3} = {0^\circ} \\ \end{gathered} $ $\left[ {\begin{array}{*{20}{c}} 0&0&\omega \\ 0&0&0 \end{array}} \right]$ $\omega = \left[ {0,0.025} \right]$
    $ \begin{gathered} {a_4} = 95_{ - 0.02}^{ - 0.01} \\ {\alpha _4} = {90^\circ},{\beta _4} = {90^\circ},{\gamma _4} = {180^\circ} \\ \end{gathered} $ $\left[ {\begin{array}{*{20}{c}} 0&0&\omega \\ 0&0&0 \end{array}} \right]$ $\omega = \left[ { - 0.02, - 0.01} \right]$
    $ \begin{gathered} a_{_4}' = 95_{ - 0.02}^{ - 0.01} \\ \alpha _{_4}' = {90^\circ},\beta _{_4}' = {90^\circ},\gamma _{_4}' = {180^\circ} \\ \end{gathered} $ $\left[ {\begin{array}{*{20}{c}} 0&0&\omega \\ 0&0&0 \end{array}} \right]$ $\omega = \left[ { - 0.02, - 0.01} \right]$
    $\begin{gathered} {a_5} = 0 \\ {\alpha _5} = {90^\circ},{\beta _5} = {90^\circ},{\gamma _5} = {180^\circ} \\ \end{gathered} $ $\left[ {\begin{array}{*{20}{c}} 0&v&\omega \\ 0&{\Delta \beta }&{\Delta \gamma } \end{array}} \right]$ $\begin{gathered} v = \omega = \left[ { - \frac{{0.3}}{2},\frac{{0.3}}{2}} \right] \\ \Delta \beta = \Delta \gamma = \left[ { - \frac{{0.3}}{{680}},\frac{{0.3}}{{680}}} \right] \\ \end{gathered} $
    $ \begin{gathered} {a_6} = 95_{ - 0.02}^{ - 0.01} \\ {\alpha _6} = {90^\circ},{\beta _6} = {90^\circ},{\gamma _6} = {0^\circ} \\ \end{gathered} $ $\left[ {\begin{array}{*{20}{c}} 0&0&\omega \\ 0&0&0 \end{array}} \right]$ $\omega = \left[ { - 0.02, - 0.01} \right]$
    $\begin{gathered} {a_7} = 0 \\ {\alpha _7} = {90^\circ},{\beta _7} = {90^\circ},{\gamma _7} = {0^\circ} \\ \end{gathered} $ $\left[ {\begin{array}{*{20}{c}} 0&v&\omega \\ 0&{\Delta \beta }&{\Delta \gamma } \end{array}} \right]$ $\begin{gathered} v = \omega = \left[ { - \frac{{0.3}}{2},\frac{{0.3}}{2}} \right] \\ \Delta \beta = \Delta \gamma = \left[ { - \frac{{0.3}}{{680}},\frac{{0.3}}{{680}}} \right] \\ \end{gathered} $
    $ \begin{gathered} {a_8} = 95_0^{ + 0.025} \\ {\alpha _8} = {90^\circ},{\beta _8} = {90^\circ},{\gamma _8} = {180^\circ} \\ \end{gathered} $ $\left[ {\begin{array}{*{20}{c}} 0&0&\omega \\ 0&0&0 \end{array}} \right]$ $\omega = \left[ {0,0.025} \right]$
    $ \begin{gathered} {a_9} = 755_{ - 0.01}^{ + 0.01} \\ {\alpha _9} = {90^\circ},{\beta _9} = {90^\circ},{\gamma _9} = 0^\circ \\ \end{gathered} $ $\left[ {\begin{array}{*{20}{c}} 0&0&\omega \\ 0&0&0 \end{array}} \right]$ $\omega = \left[ { - 0.01,0.01} \right]$
    $\begin{gathered} {a_{10}} = 0 \\ {\alpha _{10}} = {90^\circ},{\beta _{10}} = {90^\circ},{\gamma _{10}} = {0^\circ} \\ \end{gathered} $ $\left[ {\begin{array}{*{20}{c}} 0&v&\omega \\ 0&{\Delta \beta }&{\Delta \gamma } \end{array}} \right]$ $\begin{gathered} v = \omega = \left[ { - \frac{{0.02}}{2},\frac{{0.02}}{2}} \right] \\ \Delta \beta = \Delta \gamma = \left[ { - \frac{{0.3}}{{755}},\frac{{0.3}}{{755}}} \right] \\ \end{gathered} $
    下载: 导出CSV

    表  3  2种公差分析结果对比

    Table  3.   Comparison of two tolerance analysis results

    维数 方法 取值 / mm
    一维 极值法 [−1.000,0.780]
    蒙特卡罗法 [−0.930,0.410]
    三维 独立原则 [−1.005,1.005]
    包容原则 [−0.855,0.980]
    下载: 导出CSV

    表  4  PBD试验变量水平表和编码

    Table  4.   PBD test variable level table and coding

    变量编码低水平 / mm高水平 / mm
    N1A−0.3000.300
    N2B−0.5000.500
    N3C00.025
    N4D−0.020−0.010
    N5E−0.3000.300
    N6F−0.020−0.010
    N7G−0.3000.300
    N8H00.025
    N9J−0.0100.010
    N10K−0.0200.020
    下载: 导出CSV

    表  5  PBD试验组合及响应

    Table  5.   PBD test combination and response

    试验号 A B C D E F G H J K 封闭环
    FRi / mm
    1 0.300 0.500 0 −0.010 0.300 −0.020 0.300 0.025 0.010 −0.020 0.135
    2 0.300 0.500 0 −0.010 0.300 −0.010 −0.300 0 −0.010 0.020 0.350
    3 0.300 −0.500 0 −0.020 −0.300 −0.020 −0.300 0 −0.010 −0.020 −0.670
    4 0.300 0.500 0.025 −0.020 −0.300 −0.020 0.300 0 0.010 0.020 0.995
    5 0.300 0.500 0.025 −0.020 0.300 −0.010 0.300 0 −0.010 −0.020 0.365
    6 0.300 0.500 0 −0.020 −0.300 −0.010 −0.300 0.025 0.010 −0.020 0.635
    7 0.300 −0.500 0.025 −0.010 0.300 −0.020 −0.300 0 0.010 −0.020 −0.635
    8 0.300 −0.500 0 −0.010 −0.300 −0.010 0.300 0 0.010 0.020 −0.330
    9 0.300 −0.500 0 −0.020 0.300 −0.020 0.300 0.025 −0.010 0.020 −0.375
    10 0.300 −0.500 0.025 −0.020 0.300 −0.010 −0.300 0.025 0.010 0.020 −0.920
    11 0.300 −0.500 0.025 −0.010 −0.300 −0.010 0.300 0.025 −0.010 −0.020 −0.070
    12 0.300 0.500 0.025 −0.010 −0.300 −0.020 −0.300 0.025 −0.010 0.020 0.340
    下载: 导出CSV

    表  6  回归分析结果

    Table  6.   Regression analysis results

    来源模型ABCEGHJK
    平方和3.82000.27003.00000.00180.27000.27000.00180.00120.0012
    自由度811111111
    均方根0.4800000.2700003.0000000.0018000.2700000.2700000.0018750.0012000.001200
    F2 385.091 350.001 5000.009.381 350.001 350.009.386.006.00
    p<0.0001<0.0001<0.00010.0549<0.0001<0.00010.05490.09170.0917
    显著性高度显著高度显著高度显著高度显著高度显著
    下载: 导出CSV
  • [1] 何文斌, 姚港生, 汪曙光, 等. 基于响应面法的缸梁一体式六面顶压机铰链梁优化 [J]. 金刚石与磨料磨具工程, 2023, 43(4): 523-530. doi: 10.13394/j.cnki.jgszz.2022.0204

    HE Wenbin, YAO Gangsheng, WANG Shuguang, et al. Optimization of the link of the cylinder-beam integrated six-face top pressure machine using response surface methodology [J]. Diamond & Abrasives Engineering, 2023, 43(4): 523-530. doi: 10.13394/j.cnki.jgszz.2022.0204
    [2] 张永亮, 黄琪元, 王书楠, 等. 基于雅可比旋量的风电机组驱动链装配误差分析 [J]. 太阳能学报,2022,43(12):242-247. doi: 10.19912/j.0254-0096.tynxb.2021-0740

    ZHANG Yongliang, HUANG Qiyuan, WANG Shunan, et al. Assembly error analysis of wind turbine drive chain based on Jacobi spino [J]. Acta Energiae Solaris Sinica,2022,43(12):242-247. doi: 10.19912/j.0254-0096.tynxb.2021-0740
    [3] CHEN H, LI X, JIN S. A statistical method of distinguishing and quantifying tolerances in assemblies [J]. Computers & Industrial Engineering,2021,156:107259. doi: 10.1016/j.cie.2021.107259
    [4] MUJEZINOVIC A, DAVIDSON J K, SHAH J J. A new mathematical model for geometric tolerances as applied to polygonal faces [J]. Journal of Mechanical Design,2004,126(3):504-518. doi: 10.1115/1.1701881
    [5] CLEMENT A, RIVIERE A. Tolerancing versus nominal modeling in next generation CAD/CAM system: Proceedings of 3rd CIRP seminar on computer aided tolerancing [C]. CIRP: 1993.
    [6] TURNER J U, WOZNY M J. The M-space theory of tolerances: Proceedings of the ASME 16th design automation conference [C]. ASME: 1990.
    [7] 任彦松, 马志赛, 王晓鹏, 等. 含间隙飞行器折叠舵面的尺寸链分析 [J]. 航空科学技术,2023,34(3):89-96. doi: 10.19452/j.issn1007-5453.2023.03.013

    REN Yansong, MA Zhisai, WANG Xiaopeng, et al. Dimensional chain analysis of folded rudder surface of aircraft with clearance [J]. Aerospace Science and Technology,2023,34(3):89-96. doi: 10.19452/j.issn1007-5453.2023.03.013
    [8] FAN J, WANG P, ZHANG H, et al. Research on tolerance modeling method and 3D tolerance analysis technology based on STD: IOP conference series: Materials science and engineering [C]. Sanya: IOP, 2019.
    [9] 熊峰, 李刚炎, 王平俊, 等. 基于雅可比旋量的并联配合特征三维公差分析方法及其应用 [J]. 组合机床与自动化加工技术,2019(11):13-16, 21. doi: CNKI:SUN:ZHJC.0.2019-11-004

    XIONG Feng, LI Gangyan, WANG Pingjun, et al. 3D tolerance analysis method of parallel fit feature based on Jacobi spinor and its application [J]. Modular Machine Tool & Automatic Manufacturing Technique,2019(11):13-16, 21. doi: CNKI:SUN:ZHJC.0.2019-11-004
    [10] DENIS T, VINCENT D. Taking into account form variations in polyhedral approach in tolerancing analysis [J]. Procedia CIRP,2018(5):75-81. doi: 10.1016/j.procir.2018.04.084
    [11] 穆晓凯, 孙清超, 孙克鹏, 等. 基于载荷作用的柔性体三维公差建模及精度影响分析 [J]. 机械工程学报,2018,54(11):39-48. doi: 10.3901/JME.2018.11.039

    MU Xiaokai, SUN Qingchao, SUN Kepeng, et al. Three-dimensional tolerance modeling and accuracy impact analysis of flexible bodies based on load action [J]. Chinese Journal of Mechanical Engineering,2018,54(11):39-48. doi: 10.3901/JME.2018.11.039
    [12] 周志鹏, 彭和平, 常素萍. 考虑公差原则应用的统计公差分析方法 [J]. 机械设计与制造, 2022(12): 38-43. doi: 10.19356/j.cnki.1001-3997.2022.12.014

    ZHOU Zhipeng, PENG Heping, CHANG Suping. The statistical tolerance analysis method taking the application of tolerance principle into account [J]. Machinery Design & Manufacture, 2022(12): 38-43. doi: 10.19356/j.cnki.1001-3997.2022.12.014
    [13] 孟巧凤, 张林鍹, 尹琳峥, 等. 基于3DCS的三维尺寸公差的分析与优化 [J]. 系统仿真学报,2018,30(5):1730-1738. doi: 10.16182/j.issn1004731x.joss.201805014

    MENG Qiaofeng, ZHANG Linxuan, YIN Linzheng, et al. Analysis and optimization of 3D dimensional tolerances based on 3DCS [J]. Journal of system simulation,2018,30(5):1730-1738. doi: 10.16182/j.issn1004731x.joss.201805014
    [14] BOURDET P, CLEMENT A. A study of optimal-criteria identification based on the small displacement screw model [J]. Annals of the CIRP,1988,37(1):503-506. doi: 10.1016/S0007-8506(07)61687-4
    [15] BOURDET P, MATHIEU L, LARTIGUE C, et al. The concept of the small displacement torsor in metrology [J]. Advanced Mathematical Tool in Metrology, Advances in Mathematics for Applied Sciences,1996,40:110-122.
    [16] 方东阳, 李秀明, 张琳娜, 等. 基于GPS的形位公差项目分析和设计 [J]. 郑州大学学报(工学版),2005,3(3):73-75. doi: 10.3969/j.issn.1671-6833.2005.03.019

    FANG Dongyang, LI Xiuming, ZHANG Linna, et al. Analysis and design of form and position tolerance items based on GPS [J]. Journal of Zhengzhou University(Engineering Edition),2005,3(3):73-75. doi: 10.3969/j.issn.1671-6833.2005.03.019
    [17] HÉNON M. The Monte Carlo method [J]. Astrophysics and Space Science, 1971, 14(1): 151-167.
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  14
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2023-12-28
  • 刊出日期:  2024-12-06

目录

    /

    返回文章
    返回