CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

切削参数对ZrO2陶瓷切削过程影响的数值模拟

吕世聪 刘寅 孙兴伟 董祉序 杨赫然 张维锋

吕世聪, 刘寅, 孙兴伟, 董祉序, 杨赫然, 张维锋. 切削参数对ZrO2陶瓷切削过程影响的数值模拟[J]. 金刚石与磨料磨具工程, 2024, 44(6): 769-780. doi: 10.13394/j.cnki.jgszz.2023.0188
引用本文: 吕世聪, 刘寅, 孙兴伟, 董祉序, 杨赫然, 张维锋. 切削参数对ZrO2陶瓷切削过程影响的数值模拟[J]. 金刚石与磨料磨具工程, 2024, 44(6): 769-780. doi: 10.13394/j.cnki.jgszz.2023.0188
LV Shicong, LIU Yin, SUN Xingwei, DONG Zhixu, YANG Heran, ZHANG Weifeng. Numerical simulation of the influence of cutting parameters on the cutting process of ZrO2 ceramics[J]. Diamond & Abrasives Engineering, 2024, 44(6): 769-780. doi: 10.13394/j.cnki.jgszz.2023.0188
Citation: LV Shicong, LIU Yin, SUN Xingwei, DONG Zhixu, YANG Heran, ZHANG Weifeng. Numerical simulation of the influence of cutting parameters on the cutting process of ZrO2 ceramics[J]. Diamond & Abrasives Engineering, 2024, 44(6): 769-780. doi: 10.13394/j.cnki.jgszz.2023.0188

切削参数对ZrO2陶瓷切削过程影响的数值模拟

doi: 10.13394/j.cnki.jgszz.2023.0188
基金项目: 国家自然科学基金(52005346,52005347); 辽宁省应用基础研究计划项目(2022JH2 / 101300214); 辽宁省自然科学基金计划项目(2021-BS-149); 辽宁省教育厅科学研究经费项目(LQGD2020017)。
详细信息
    作者简介:

    刘寅,男,1986年生,博士、副教授。主要研究方向:难加工材料精密加工技术、微尺度加工技术、绿色与清洁加工技术。E-mail:liuyin_neu@163.com

  • 中图分类号: TG58; TG71

Numerical simulation of the influence of cutting parameters on the cutting process of ZrO2 ceramics

  • 摘要: 采用有限元仿真方法对ZrO2陶瓷工件进行三维切削过程的数值模拟,探讨工件材料切削过程中切屑去除机理、应力动态变化与分布规律以及切削力的演变规律等。结果表明:切削过程中刀具的硬接触行为显著影响材料去除,导致切屑崩落、材料开裂和裂纹扩展等失效形式出现。在切削深度分别为200和250 μm时,工件末端边缘出现大量裂纹,并朝垂直切削方向扩展,导致工件边缘出现大尺寸碎裂。增大切削速度可引起应力和切削力的上下波动,但在整体上没有明显变化。刀具刃圆半径影响切入初期裂纹的形成,随着刃圆半径增大,刀具前端的裂纹长度逐渐缩短,但其对切削力的影响不明显。负的刀具前角切削不会使工件内部产生裂纹,可获得较好的加工质量;此外,在刀具前角为0°时,其最大切削力最大,但随着刀具前角增加,其平均切削力变化不明显。

     

  • 图  1  三维切削有限元模型

    Figure  1.  Finite element model of 3D cutting

    图  2  JH-2模型状态方程

    Figure  2.  Equation of state for the JH-2 model

    图  3  JH-2模型强度方程

    Figure  3.  Strength equation of JH-2 model

    图  4  切削过程的有限元仿真

    Figure  4.  Finite element simulation of cutting process

    图  5  切削力变化曲线

    Figure  5.  Cutting force variation curve

    图  6  不同切削深度下的ZrO2陶瓷工件及刀具表面应力云图

    Figure  6.  Stress clouds of ZrO2 ceramics workpiece and tool surfaces at different cutting depths

    图  7  切削深度对切削力的影响

    Figure  7.  Effects of cutting depths on cutting forces

    图  8  不同切削速度下的工件表面、工件x轴方向和刀具表面应力云图

    Figure  8.  Stress clouds of workpiece surface, x-axis directions of workpiece and tool surface at different cutting speeds

    图  9  不同切削速度对切削力的影响

    Figure  9.  Effects of different cutting speeds on cutting forces

    图  10  不同刃圆半径下工件表面和刀具表面的应力云图

    Figure  10.  Stress nephograms of workpiece surfaces and tool surfaces under different blade radii

    图  11  刃圆半径对切削力的影响

    Figure  11.  Effect of blade circle radius on cutting force

    图  12  不同刀具前角下的应力云图

    Figure  12.  Stress clouds under different cutting tool rake angles

    图  13  不同刀具前角对切削力的影响

    Figure  13.  Effects of different tool rake angles on cutting forces

    表  1  材料物性参数

    Table  1.   Materials physical propertiy parameters

    参数 ZrO2陶瓷 硬质合金刀具
    密度 ρ1 / (kg·m−3) 6 050 8 120
    杨氏模量 E1 / GPa 239 223
    导热系数 κ / [W·(m·K)−1] 2.6 59.0
    比热容 c / [J·(kg·K)−1] 400 520
    泊松比 ε 0.30 0.28
    下载: 导出CSV

    表  2  ZrO2陶瓷JH-2本构模型参数

    Table  2.   JH-2 constitutive model parameters of ZrO2 ceramics

    参数取值参数取值
     密度 ρ / (kg·m−3)6 050强度
    常量
    A0.93
     剪切模量 E2 / GPa95.31B0.31
    损伤
    常量
    D10.005C0
    D21.0M0.6
    FS1.0N0.6
    状态
    方程
    常量
    K1 / GPa130.95EPSI1.0
    K2 / GPa0T / GPa0.23
    K3 / GPa0HEL / GPa2.79
    BETA1.0PHEL / GPa1.46
    下载: 导出CSV

    表  3  仿真参数

    Table  3.   Simulation parameters

    参数名称 取值
    刀具刃圆半径 R / μm 10,20,30
    刀具前角 θ /(°) −15,0,15,30
    切削深度 ap / μm 50,100,150,200,250
    切削速度 v / (mm·s−1 800,900,1 000,1 100,1 200
    下载: 导出CSV
  • [1] 任永国, 刘自强, 杨凯, 等. 氧化锆材料种类及应用 [J]. 中国陶瓷,2008(4):44-46. doi: 10.3969/j.issn.1001-9642.2008.04.014

    REN Yongguo, LIU Ziqiang, YANG Kai, et al. Types and applications of zirconia materials [J]. China Ceramics,2008(4):44-46. doi: 10.3969/j.issn.1001-9642.2008.04.014
    [2] AGARWAL S, RAO P V. Modeling and prediction of surface roughness in ceramic grinding [J]. International Journal of Machine Tools & Manufacture,2010,50(12):1056-1076. doi: 10.1016/j.ijmachtools.2010.08.009
    [3] 于思远. 工程陶瓷材料的加工技术及其应用 [M]. 北京: 机械工业出版社, 2008.

    YU Siyuan. Processing technology and application of engineering ceramic materials [M]. Beijing: China Machine Press, 2008.
    [4] 田欣利, 徐西鹏, 袁巨龙. 工程陶瓷先进加工与质量控制技术 [M]. 北京: 国防工业出版社, 2014.

    TIAN Xinli, XU Xipeng, YUAN Julong. Advanced processing and quality control technology for engineering ceramics [M]. Beijing: National Defense Industry Press, 2014.
    [5] REN N, XIA K, YANG H, et al. Water-assisted femtosecond laser drilling of alumina ceramics [J]. Ceramics International,2021,47(8):11465-11473. doi: 10.1016/j.ceramint.2020.12.274
    [6] GENG T, XU Z. Electrochemical discharge machining for fabricating holes in conductive materials: A review [J]. Journal of Advanced Manufacturing Science and Technology,2021,1(3):2021006. doi: 10.51393/j.jamst.2021006
    [7] KLIUEV M, MARADIA U, BOCCADORO M, et al. Experimental study of EDM-drilling and shaping of SiSiC and SiC [J]. Procedia CIRP,2016,42:191-196. doi: 10.1016/j.procir.2016.02.269
    [8] XU J, LI L, JI M, et al. Study on PCD tool wear in hard milling of fully-sintered 3Y-TZP ceramics [J]. Journal of Superhard Materials,2022,44:292-300. doi: 10.3103/S1063457622040098
    [9] WANG Z, RAJURKAR K P, MURUGAPPAN M. Cryogenic PCBN turning of ceramic (Si3N4) [J]. Wear,1996,195(1/2):1-6. doi: 10.1016/0043-1648(95)06645-4
    [10] ZHENG L, WEI W, FENG Y, et al. Drilling machinability of engineering ceramics under low-frequency axial vibration processing by sintering / brazing composite diamond trepanning bit [J]. Ceramics International,2019,45(9):11905-11911. doi: 10.1016/j.ceramint.2019.03.077
    [11] 刘伟, 邓朝晖, 万林林, 等. 单颗金刚石磨粒切削氮化硅陶瓷仿真与试验研究 [J]. 机械工程学报,2015,51(21):191-198. doi: 10.3901/JME.2015.21.191

    LIU Wei, DENG Zhaohui, WAN Linlin, et al. Simulation and experimental study on single diamond abrasive grain cutting of silicon nitride ceramics [J]. Journal of Mechanical Engineering,2015,51(21):191-198. doi: 10.3901/JME.2015.21.191
    [12] 宿崇, 许立, 刘元伟, 等. 基于SPH法的CBN磨粒切削过程数值模拟 [J]. 中国机械工程,2013,24(5):667-671. doi: 10.3969/j.issn.1004-132X.2013.05.021

    SU Chong, XU Li, LIU Yuanwei, et al. Numerical simulation of CBN abrasive grain cutting process based on SPH method [J]. China Mechanical Engineering,2013,24(5):667-671. doi: 10.3969/j.issn.1004-132X.2013.05.021
    [13] PENG Y, LIANG Z, WU Y, GUO Y et al. Characteristics of chip generation by vertical elliptic ultrasonic vibration-assisted grinding of brittle materials [J]. The International Journal of Advanced Manufacturing Technology,2012,62:563-568. doi: 10.1007/s00170-011-3839-8
    [14] 曹建国, 张勤俭. 碳化硅陶瓷超声振动辅助磨削材料去除特性研究 [J]. 机械工程学报,2019,55(13):205-211. doi: 10.3901/JME.2019.13.205

    CAO Jianguo, ZHANG Qinjian. Study on material removal characteristics in ultrasonic vibration-assisted grinding of silicon carbide ceramics [J]. Journal of Mechanical Engineering,2019,55(13):205-211. doi: 10.3901/JME.2019.13.205
    [15] 刘松恺, 张午阳, 徐锦泱, 等. 基于SPH方法的氧化锆陶瓷正交切削仿真研究 [J]. 工具技术,2023,57(9):103-109. doi: 10.3969/j.issn.1000-7008.2023.09.016

    LIU Songkai, ZHANG Wuyang, XU Jinyang, et al. Simulation study of orthogonal cutting of zirconia ceramic based on SPH method [J]. Tool Engineering,2023,57(9):103-109. doi: 10.3969/j.issn.1000-7008.2023.09.016
    [16] 何天伦, 贾乾忠, 刘明贺. 氧化锆陶瓷材料磨削表面残余应力研究与预测仿真 [J]. 机电产品开发与创新,2023,36(4):106-109. doi: 10.3969/j.issn.1002-6673.2023.04.029

    HE Tianlun, JIA Qianzhong, LIU Minghe. Research and simulation of residual stress on ground surface of zirconia ceramic materials [J]. Development and Innovation of Machinery and Electrical Products,2023,36(4):106-109. doi: 10.3969/j.issn.1002-6673.2023.04.029
    [17] 邓泽辉. 力热耦合作用下氧化锆陶瓷精密磨削损伤仿真与实验研究 [D]. 湘潭: 湖南科技大学, 2018.

    DENG Zehui. Simulation and experimental study of damage in precision grinding of zirconia ceramics under the action of mechanothermal coupling [D]. Xiangtan: Hunan University of Science and Technology, 2018.
    [18] JOHNSON G R, HOLMQUIST T. Response of boron carbide subjected to large strains, high strain rates, and high pressures [J]. Journal of Applied Physics,1999,85(12):8060-8073. doi: 10.1063/1.370643
    [19] 杨震琦, 庞宝君, 王立闻, 等. JH-2模型及其在Al2O3陶瓷低速撞击数值模拟中的应用 [J]. 爆炸与冲击,2010(5):18-26. doi: 10.11883/1001-1455(2010)05-0463-09

    YANG Zhenqi, PANG Baojun, WANG Liwen, et al. The application of the JH-2 model and its application in Al2O3 ceramic low-speed impact numerical simulation [J]. Explosion and Shock Waves,2010(5):18-26. doi: 10.11883/1001-1455(2010)05-0463-09
    [20] HOLMQUIST T J, TEMPLETON D W, BISHNOI K D. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications [J]. International Journal of Impact Engineering,2001,25(3):211-231. doi: 10.1016/S0734-743X(00)00046-4
    [21] 熊益波, 陈剑杰, 胡永乐. 混凝土Johnson-Holmquist本构模型灵敏参数的初步确认 [J]. 兵工学报,2009,30(S2):145-148.

    XIONG Yibo, CHEN Jianjie, HU Yongle. Preliminary confirmation of sensitive parameters of the Johnson-Holmquist constitutive model for concrete [J]. Acta Armamentarii,2009,30(S2):145-148.
    [22] LI J, HUANG Z, LIU G, et al. An experimental and finite element investigation of chip separation criteria in metal cutting process [J]. The International Journal of Advanced Manufacturing Technology,2021,116:3877-3889. doi: 10.1007/s00170-021-07461-0
    [23] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics,1985,21(1):31-48. doi: 10.1016/0013-7944(85)90052-9
    [24] DENG B, YANG M, ZHOU L, et al. Smoothed particle hydrodynamics (SPH) simulation and experimental investigation on the diamond fly-cutting milling of zirconia ceramics [J]. Procedia CIRP,2019,82:202-207. doi: 10.1016/j.procir.2019.04.001
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  123
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-07
  • 修回日期:  2024-01-23
  • 网络出版日期:  2024-02-21
  • 刊出日期:  2024-12-06

目录

    /

    返回文章
    返回