CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热爆反应在金刚石表面快速形成TiC涂层

史冬丽 马尧 李涛

史冬丽, 马尧, 李涛. 热爆反应在金刚石表面快速形成TiC涂层[J]. 金刚石与磨料磨具工程, 2024, 44(4): 463-469. doi: 10.13394/j.cnki.jgszz.2023.0170
引用本文: 史冬丽, 马尧, 李涛. 热爆反应在金刚石表面快速形成TiC涂层[J]. 金刚石与磨料磨具工程, 2024, 44(4): 463-469. doi: 10.13394/j.cnki.jgszz.2023.0170
SHI Dongli, MA Yao, LI Tao. Rapid formation of TiC coating on diamond surface through thermal explosion reaction[J]. Diamond & Abrasives Engineering, 2024, 44(4): 463-469. doi: 10.13394/j.cnki.jgszz.2023.0170
Citation: SHI Dongli, MA Yao, LI Tao. Rapid formation of TiC coating on diamond surface through thermal explosion reaction[J]. Diamond & Abrasives Engineering, 2024, 44(4): 463-469. doi: 10.13394/j.cnki.jgszz.2023.0170

热爆反应在金刚石表面快速形成TiC涂层

doi: 10.13394/j.cnki.jgszz.2023.0170
详细信息
    作者简介:

    史冬丽,女,1974年生,高级工程师。主要研究方向:超硬材料及制品。E-mail:shidongli@zzpolis.com

  • 中图分类号: TQ164

Rapid formation of TiC coating on diamond surface through thermal explosion reaction

  • 摘要: 分别采用Ti/碳黑/diamond和Ti/碳黑/PTFE/diamond粉体为原料,通过热爆反应在金刚石颗粒表面形成以TiC为主的涂层,研究原料中金刚石含量及添加PTFE对金刚石表面TiC涂层的影响。结果表明:2种体系的原料热爆反应后基体的组成为TiC。Ti/碳黑/diamond体系中,当原料中金刚石质量分数为10%~30%时,反应后的金刚石表面均实现良好的TiC涂层涂覆。在Ti/碳黑/PTFE/diamond体系中,当原料中添加质量分数为3%的PTFE并减少原料中碳黑的质量分数时,可明显促进金刚石表面的TiC涂覆;且当原料中金刚石质量分数为80%~90%时,仍可使金刚石颗粒表面实现良好的TiC涂覆。

     

  • 图  1  Ti粉与碳黑粉末的微观形貌图

    Figure  1.  Microstructure of Ti powder and carbon black powder

    图  2  试样装样方式

    Figure  2.  Sample loading methods

    图  3  不同金刚石质量分数下分离出来的金刚石颗粒外观

    Figure  3.  Appearances of diamond particles separated under different diamond mass fractions

    图  4  反应后试样中分离出来的结合剂和金刚石XRD图谱

    Figure  4.  XRD patterns of binder and diamond separated from the sample after reaction

    图  5  金刚石质量分数为10%和30%时反应后分离出来的金刚石颗粒的SEM形貌和能谱图

    Figure  5.  SEM morphologies and EDS spectrum of diamond particles separated after reaction when the mass fraction of diamond is 10% and 30%

    图  6  不同金刚石质量分数下反应后金刚石颗粒的外观

    Figure  6.  Appearances of diamond particles after reaction under different diamond mass fractions

    图  7  热爆反应后试样中金刚石的XRD图谱

    Figure  7.  XRD patterns of diamond in samples after thermal explosion reaction

    图  8  金刚石质量分数为20%和40%时反应后分离出来的金刚石颗粒的SEM形貌

    Figure  8.  SEM morphologies of diamond particles separated after reaction when the mass fraction of diamond is 20% and 40%

    图  9  较低碳黑含量下得到的样品中分离出的金刚石颗粒外观

    Figure  9.  Appearances of diamond particles separated from samples obtained at lower carbon black content

  • [1] TONSHOFF H K, DENKENA B, APMANN H H. Diamond tools for wire sawing metal components [J]. Key Engineering Materials,2003,250:33-40. doi: 10.4028/www.scientific.net/KEM.250.33
    [2] TONSHOFF H K, DENKENA B, APMANN H H, et al. Diamond tools in stone and civil engineering industry: Cutting principles, wear and applications [J]. Key Engineering Materials,2003(250):103-109.
    [3] 朱振东, 刘豪, 张甜, 等. 金刚石表面镀覆技术与应用的研究进展 [J]. 超硬材料工程,2021(3):28-32.

    ZHU Zhendong, LIU Hao, ZHANG Tian, et al. Research progress of plating technology on the diamond surface and its application [J]. Superhard Material Engineering,2021(3):28-32.
    [4] 黄本生, 李慧, 江仲英, 等. 金刚石CVD金属化及其应用 [J]. 真空科学与技术学报,2011,31(6):754-759.

    HUANG Bensheng, LI Hui, JIANG Zhongying, et al. Diamond metallization by chemical vapor deposition and its applications [J]. Chinese Journal of Vacuum Science and Technology,2011,31(6):754-759.
    [5] HU G, YANG J, LIU Y. Deposition of tungsten - titanium carbides on surface of diamond by reactive PVD [J]. Transactions of Nonferrous Metals Society of China,1999,9(4):838-841.
    [6] MIYAKE S, SHINDO T, MIYAKE M. Regression analysis of the effect of bias voltage on nano- and macrotribological properties of diamond-like carbon films deposited by a filtered cathodic vacuum arc ion-plating method [J]. Journal of Nanomaterials,2014(1/2):1-13.
    [7] DAOUSH W M, PARK H S, HONG S H. Fabrication of TiN/cBN and TiC/diamond coated particles by titanium deposition process [J]. Transactions of Nonferrous Metals Society of China,2014,24(11):3562-3570. doi: 10.1016/S1003-6326(14)63502-0
    [8] JIAO X Y, CAI X P, NIU G, et al. Rapid reactive synthesis of TiAl3 intermetallics by thermal explosion and its oxidation resistance at high temperature [J]. Progress in Natural Science:Materials International,2019,29(4):447-452. doi: 10.1016/j.pnsc.2019.05.002
    [9] LIU Y, SUN Z, CAI X, et al. Fabrication of porous FeAl-based intermetallics via thermal explosion [J]. Transactions of Nonferrous Metals Society of China,2018,28(6):1141-1148. doi: 10.1016/S1003-6326(18)64737-5
    [10] LIANG B, DAI Z, ZHANG Q, et al. Coating of diamond by thermal explosion reaction [J]. Diamond and Related Materials,2021,119:108572. doi: 10.1016/j.diamond.2021.108572
    [11] ZHAO H, YIN X, WANG Y. Coating diamond surfaces in a Ti/Si/carbon black/diamond system via thermal explosion [J]. Diamond and Related Materials,2022,127:109195. doi: 10.1016/j.diamond.2022.109195
    [12] LI Q, ZHANG Q, LIANG B, et al. Coating on the surface of diamond particles by thermal explosion reaction method [J]. Journal of Superhard Materials,2022,44(3):191-197. doi: 10.3103/S1063457622030042
    [13] 殷声. 燃烧合成 [M]. 北京: 冶金工业出版社, 1999.

    YIN Sheng. Combustion synthesis [M]. Beijing: Metallurgical Industry Press, 1999.
    [14] YANG K, YANG Y, LIN Z M, et al. Mechanical-activation-assisted combustion synthesis of SiC powders with polytetrafluoroethylene as promoter [J]. Materials Research Bulletin,2007,42(9):1625-1632. doi: 10.1016/j.materresbull.2006.11.037
    [15] ZURNACHYAN A R, KHARATYAN S L, KHACHATRYAN H L, et al. Self-propagating high temperature synthesis of SiC–Cu and SiC–Al cermets: Role of chemical activation [J]. International Journal of Refractory Metals and Hard Materials,2011,29(2):250-255. doi: 10.1016/j.ijrmhm.2010.11.002
    [16] BAGHDASARYAN A M, HOBOSYAN M A, KHACHATRYAN H L, et al. The role of chemical activation on the combustion and phase formation laws in the Ni–Al-promoter system [J]. Chemical Engineering Journal,2012,188:210-215. doi: 10.1016/j.cej.2012.01.137
    [17] LEE I, REED R R, BRADY V L, et al. Energy release in the reaction of metal powders with fluorine containing polymers [J]. Therm Anal Calorim,1997,49(3):1699-1705. doi: 10.1007/BF01983730
    [18] 鱼银虎, 汪涛, 张洪敏, 等. PTFE促发TiC陶瓷粉体低温固相合成研究 [J]. 无机材料学报,2015,30(3):272-276. doi: 10.15541/jim20140307

    YU Yinhu, WANG Tao, ZHANG Hongmin, et al. Low temperature combustion synthesis of TiC powder induced by PTFE [J]. Journal of Inorganic Materials,2015,30(3):272-276. doi: 10.15541/jim20140307
    [19] DUNMEAD S D, READEY D W, SEMLER C E, et al. Kinetics of combustion synthesis in the Ti-C and Ti-C-Ni systems [J]. Journal of American Ceram Society,1989,72(12):2318-2324. doi: 10.1111/j.1151-2916.1989.tb06083.x
  • 加载中
图(9)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  70
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-25
  • 修回日期:  2023-10-24
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2024-08-20

目录

    /

    返回文章
    返回