CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单磨粒金刚石微切削碳化硅晶体仿真与实验研究

杨宇飞 李翔 何艳 刘铭 徐子成 高兴军

杨宇飞, 李翔, 何艳, 刘铭, 徐子成, 高兴军. 单磨粒金刚石微切削碳化硅晶体仿真与实验研究[J]. 金刚石与磨料磨具工程, 2024, 44(4): 495-507. doi: 10.13394/j.cnki.jgszz.2023.0158
引用本文: 杨宇飞, 李翔, 何艳, 刘铭, 徐子成, 高兴军. 单磨粒金刚石微切削碳化硅晶体仿真与实验研究[J]. 金刚石与磨料磨具工程, 2024, 44(4): 495-507. doi: 10.13394/j.cnki.jgszz.2023.0158
YANG Yufei, LI Xiang, HE Yan, LIU Ming, XU Zicheng, GAO Xingjun. Simulation and experimental study on micro-cutting silicon carbide crystal with single grain diamond[J]. Diamond & Abrasives Engineering, 2024, 44(4): 495-507. doi: 10.13394/j.cnki.jgszz.2023.0158
Citation: YANG Yufei, LI Xiang, HE Yan, LIU Ming, XU Zicheng, GAO Xingjun. Simulation and experimental study on micro-cutting silicon carbide crystal with single grain diamond[J]. Diamond & Abrasives Engineering, 2024, 44(4): 495-507. doi: 10.13394/j.cnki.jgszz.2023.0158

单磨粒金刚石微切削碳化硅晶体仿真与实验研究

doi: 10.13394/j.cnki.jgszz.2023.0158
基金项目: 辽宁省博士科研启动基金计划项目(2022-BS-292); 辽宁省教育厅科学技术研究项目(LJKZ0383); 辽宁石油化工大学引进人才科研启动基金(2020XJJL-012); 省级大学生创新创业训练计划项目(S202310148031)。
详细信息
    通讯作者:

    高兴军,男,1979年生,硕士、副教授。主要研究方向:精密磨削、纳米制造。E-mail:gaoxingjun@lnpu.edu.cn

  • 中图分类号: TG74; TG58

Simulation and experimental study on micro-cutting silicon carbide crystal with single grain diamond

  • 摘要: 采用有限元软件Abaqus建立金刚石锥形磨粒微切削碳化硅晶体的模型,通过预仿真模型确定切削深度和切削速度的选择范围,分析影响切削力的主、次要因素,研究单一切削参数对碳化硅晶体切削效果的影响;并借助赫兹接触理论,验证加载力对摩擦力、切削边缘形貌、切削深度的影响。结果表明:切削深度是影响切削力的显著因素,预仿真模型确定的切削深度不超过1.50 μm;碳化硅晶体切削的最优方案为切削深度取0.50 μm、切削速度取76 m/s、磨料切削刃角度取60°。通过控制切削深度可以提高切削稳定性,且在保证切削质量的前提下适当提高切削速度可以提高切削效率。金刚石探针压入晶体的深度与摩擦系数、摩擦力和切削力呈正相关,获得的碳化硅晶体切削边缘的三维轮廓相对平整、光滑。

     

  • 图  1  单颗磨粒运动轨迹示意图

    Figure  1.  Schematic diagram of movement track of single grain diamond in ultra-thin grinding wheel

    图  2  磨粒切削工件运动轨迹示意图

    Figure  2.  Schematic diagram of diamond grain cutting workpiece

    图  3  预仿真模型

    Figure  3.  Pre-simulation model

    图  4  3种不同锥角磨粒的模型

    Figure  4.  Three models of grains with different cone angles

    图  5  单磨粒金刚石切削碳化硅工件仿真模型

    Figure  5.  Simulation model of single grain diamond cutting silicon carbide workpiece

    图  6  碳化硅工件的状态云图

    Figure  6.  State nephogram of silicon carbide workpiece

    图  7  不同切削速度切削碳化硅工件的状态云图

    Figure  7.  State nephograms of cutting silicon carbide workpiece at different cutting speeds

    图  8  不同切削速度下的最大切缝宽度和最大切缝深度

    Figure  8.  Maximum slit width Wmax and maximum slit depth Hmax at different cutting speeds

    图  9  不同切削参数组合下碳化硅工件应力云图

    Figure  9.  Stress nephograms of silicon carbide workpiece with different combinations of cutting parameters

    图  10  不同切削深度切削碳化硅工件的应力云图

    Figure  10.  Stress nephograms of silicon carbide workpiece with different cutting depth

    图  11  不同切削深度下的切削力

    Figure  11.  Cutting forces with different cutting depths

    图  12  不同切削速度切削碳化硅工件的应力云图

    Figure  12.  Stress nephograms of silicon carbide workpiece with different cutting speeds

    图  13  不同切削速度下的切削力

    Figure  13.  Cutting forces with different cutting speeds

    图  14  金刚石探针划擦碳化硅工件原理

    Figure  14.  Schematic diagram of diamond tip scratching silicon carbide crystal

    图  15  不同加载力下的摩擦系数与摩擦力

    Figure  15.  Friction coefficients and frictional forces with different load forces

    图  16  碳化硅工件划痕形貌及截面轮廓

    Figure  16.  Scratched morphologies and cross-sectional profiles of silicon carbide workpieces

    图  17  碳化硅工件压痕深度对比

    Figure  17.  Comparison of indentation depths of silicon carbide workpiece

    表  1  金刚石和碳化硅的物理性能参数

    Table  1.   The physical properties of diamond and SiC

    材料 密度 ρ' / (kg·m−3) 弹性模量 E / GPa 泊松比 ε
    金刚石 3523 1050 0.07
    碳化硅 3215 196 0.21
    下载: 导出CSV

    表  2  碳化硅JH-2本构模型参数

    Table  2.   JH-2 constitutive model parameters of SiC

    参数 取值
    A 0.96
    B 0.35
    C 0
    M 1.00
    N 0.65
    下载: 导出CSV

    表  3  正交试验的因素及水平

    Table  3.   Factors and level of orthogonal test

    水平 切削速度
    v / (m·s−1)
    切削深度
    ap / μm
    磨粒锥角
    θ / (°)
    U V W
    1 60 0.5 60
    2 76 1.0 90
    3 85 1.5 120
    下载: 导出CSV

    表  4  极差分析表

    Table  4.   Range analysis results

    No. U V W 空列 主切削力 Fc / mN
    1 1 1 1 1 0.08
    2 1 2 2 2 0.39
    3 1 3 3 3 0.95
    4 2 1 2 3 0.31
    5 2 2 3 1 0.52
    6 2 3 1 2 0.49
    7 3 1 3 2 0.30
    8 3 2 1 3 0.43
    9 3 3 2 1 0.68
    K1 1.42 0.70 1.00 1.29
    K2 1.32 1.34 1.38 1.18
    K3 1.41 2.12 1.78 1.68
    k1 0.47 0.23 0.33 0.43
    k2 0.44 0.45 0.46 0.39
    k3 0.47 0.71 0.59 0.56
    R 0.03 0.47 0.26 0.17
    下载: 导出CSV

    表  5  方差分析结果

    Table  5.   Variance analysis results

    差异源 SS df MS F P-value 显著性
    U 0.002 2 0.001 0.08 6.94
    V 0.337 2 0.168 13.75 6.94 *
    W 0.100 2 0.050 4.12 6.94
    误差e 0.047 2 0.023
    误差eΔ 0.049 4 0.012
    总和 0.536 12
    下载: 导出CSV
  • [1] XUN Q, XUN B Y, LI Z X, et al. Application of SiC power electronic devices in secondary power source for aircraft [J]. Renewable and Sustainable Energy Reviews,2017,70:1336-1342. doi: 10.1016/j.rser.2016.12.035
    [2] HE Y, YUAN Z W, TANG M L, et al. Mechanism of chemical and mechanical mutual promotion in photocatalysis-assisted chemical mechanical polishing for single-crystal SiC [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2022,236(24):11464-11478. doi: 10.1177/09544062221117953
    [3] CHOI P H, KIM Y P, KIM M S, et al. Side-illuminated photoconductive semiconductor switch based on high purity semi-insulating 4H-SiC [J]. IEEE Transactions on Electron Devices,2021,68(12):6216-6221. doi: 10.1109/TED.2021.3117535
    [4] MATSUNAMI H. Fundamental research on semiconductor SiC and its applications to power electronics [J]. Proceedings of the Japan Academy Series B-Physical and Biological Sciences,2020,96(7):235-254. doi: 10.2183/pjab.96.018
    [5] KITAHARA H, NODA Y, YOSHIDA F, et al. Mechanical behavior of single crystalline and polycrystalline silicon carbides evaluated by Vickers indentation [J]. Journal of the Ceramic Society of Japan,2001,109(1271):602-606. doi: 10.2109/jcersj.109.1271_602
    [6] 魏正义, 高兴军, 邓子龙, 等. 基于ABAQUS的超声椭圆振动车削GH4169的切削性能研究 [J]. 辽宁石油化工大学学报,2021,41(6):67-71. doi: 10.3969/j.issn.1672-6952.2021.06.013

    WEI Zhengyi, GAO Xingjun, DENG Zilong, et al. Research on cutting performance of GH4169 in ultrasonic ellipticavibration turning based on ABAQUS [J]. Journal of Liaoning Petrochemical University,2021,41(6):67-71. doi: 10.3969/j.issn.1672-6952.2021.06.013
    [7] KAMIYA O, TAKAHASHI M, MIYANO Y, et al. Cutting of diamond substrate using fixed diamond grain saw wire [J]. Materials,2022,15(16):5524. doi: 10.3390/ma15165524
    [8] YIN Y K, GAO Y F, YANG C F. Sawing characteristics of diamond wire cutting sapphire crystal based on tool life cycle [J]. Ceramics International,2021,47(19):26627-26634. doi: 10.1016/j.ceramint.2021.06.070
    [9] ZHANG J G, SUZUKI N, WANG YI L, et al. Fundamental investigation of ultra-precision ductile machining of tungsten carbide by applying elliptical vibration cutting with single crystal diamond [J]. Journal of Materials Processing Technology,2014,214(11):2644-2659. doi: 10.1016/j.jmatprotec.2014.05.024
    [10] WANG H J, YANG T. A review on laser drilling and cutting of silicon [J]. Journal of the European Ceramic Society,2021,41(10):4997-5015. doi: 10.1016/j.jeurceramsoc.2021.04.019
    [11] CHEN Z J, ZHAO S D, ZHAO Y H. Electrochemical jet-assisted precision grinding of single-crystal SiC using soft abrasive wheel [J]. International Journal of Mechanical Sciences,2021,195:106239. doi: 10.1016/j.ijmecsci.2020.106239
    [12] JI S J, LIU LL, ZHAO J, et al. Finite element analysis and simulation about microgrinding of SiC [J]. Journal of Nanomaterials, 2015, 2015: 575398.
    [13] WEI J H, WANG H J, LIN B, et al. A force model in single grain grinding of long fiber reinforced woven composite [J]. The International Journal of Advanced Manufacturing Technology,2019,100(1/2/3/4):541-52. doi: 10.1007/s00170-018-2719-x
    [14] GU Y, ZHU W, LIN J, et al. Subsurface damage in polishing process of silicon carbide ceramic [J]. Materials (Basel),2018,11(4):506. doi: 10.3390/ma11040506
    [15] GUERRINI G, BRUZZONE A A G, CRENNA F. Single grain grinding: An experimental and FEM assessment [J]. Procedia CIRP,2017,62:287-292. doi: 10.1016/j.procir.2016.07.082
    [16] DAI J B, SU H H, HU H, et al. The influence of grain geometry and wear conditions on the material removal mechanism in silicon carbide grinding with single grain [J]. Ceramics International,2017,43(15):11973-11980. doi: 10.1016/j.ceramint.2017.06.047
    [17] ZHOU W B, SU H H, DAI J B, et al. Numerical investigation on the influence of cutting-edge radius and grinding wheel speed on chip formation in SiC grinding [J]. Ceramics International,2018,44(17):21451-21460. doi: 10.1016/j.ceramint.2018.08.206
    [18] LIU Y, LI B Z, WU C J, et al. Smoothed particle hydrodynamics simulation and experimental analysis of SiC ceramic grinding mechanism [J]. Ceramics International,2018,44(11):12194-12203. doi: 10.1016/j.ceramint.2018.03.278
    [19] DU J G, ZHANG H Z, MA J, et al. Simulation and experimental study on single diamond grit of machining SiCp/Al composites [J]. Modern Manufacturing Engineering,2019,26(1):29-40.
    [20] DUAN N, YU Y Q, WANG W S, et al. SPH and FE coupled 3D simulation of monocrystal SiC scratching by single diamond grit [J]. International Journal of Refractory Metals and Hard Materials,2017,64:279-293. doi: 10.1016/j.ijrmhm.2016.09.016
    [21] NGUYEN V T, FANG T H. Material removal and interactions between an abrasive and a SiC substrate: a molecular dynamics simulation study [J]. Ceramics International,2020,46(5):5623-5633. doi: 10.1016/j.ceramint.2019.11.006
    [22] LIU Y, LI B Z, KONG L F. Atomistic insights on the nanoscale single grain scratching mechanism of silicon carbide ceramic based on molecular dynamics simulation [J]. AIP Advances,2018,8(3):035109. doi: 10.1063/1.5019683
    [23] MENG B B, YUAN D D, XU S L. Study on strain rate and heat effect on the removal mechanism of SiC during nano-scratching process by molecular dynamics simulation [J]. International Journal of Mechanical Sciences,2019,151:724-732. doi: 10.1016/j.ijmecsci.2018.12.022
    [24] WU Z H, ZHANG L C, YANG S Y. Effect of abrasive grain position patterns on the deformation of 6H-silicon carbide subjected to nano-grinding [J]. International Journal of Mechanical Sciences,2021,211:106779. doi: 10.1016/j.ijmecsci.2021.106779
    [25] ZHOU P, SHI X D, LI J, et al. Molecular dynamics simulation of SiC removal mechanism in a fixed abrasive polishing process [J]. Ceramics International,2019,45(12):14614-14624. doi: 10.1016/j.ceramint.2019.04.180
    [26] 凡林, 邓子龙, 高兴军, 等. 基于田口法的微织构PCBN刀具织构参数优化 [J]. 辽宁石油化工大学学报,2021,41(4):71-77. doi: 10.3969/j.issn.1672-6952.2021.04.012

    FAN Lin, DENG Zilong, GAO Xingjun, et al. Optimization of texture parameters of micro-textured PCBN tool based on taguchi method [J]. Journal of Liaoning Petrochemical University,2021,41(4):71-77. doi: 10.3969/j.issn.1672-6952.2021.04.012
    [27] SHIBATA T, FUJII S, MAKINO E, et al. Ductile-regime turning mechanism of single-crystal silicon [J]. Precision Engineering,1996,18(2/3):129-137.
    [28] CHAI P, LI S J, LI Y. Modeling and experiment of the critical depth of cut at the ductile–brittle transition for a 4H-SiC single crystal [J]. Micromachines,2019,10(6):382. doi: 10.3390/mi10060382
    [29] ZHANG B, YIN J F. The ‘skin effect’ of subsurface damage distribution in materials subjected to high-speed machining [J]. International Journal of Extreme Manufacturing,2019,1(1):012007. doi: 10.1088/2631-7990/ab103b
    [30] ZHANG D Z, ZHAO L, ROY A. Mechanical behavior of silicon carbide under static and dynamic compression [J]. Journal of Engineering Materials and Technology,2019,141(1):011007. doi: 10.1115/1.4040591
    [31] TAN Y Q, YANG D M, SHENG Y. Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC [J]. Journal of the European Ceramic Society,2009,29(6):1029-1037. doi: 10.1016/j.jeurceramsoc.2008.07.060
    [32] AGARWAL S, RAO P V. Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding [J]. International Journal of Machine Tools and Manufacture,2008,48(6):698-710. doi: 10.1016/j.ijmachtools.2007.10.013
    [33] WANG X, LI Y Q, XU J K, et al. Comparison and research on simulation models of aluminum-based silicon carbide micro-cutting [J]. International Journal of Advanced Manufacturing Technology,2020,109(1/2):589-605.
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  442
  • HTML全文浏览量:  138
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-03
  • 修回日期:  2023-10-12
  • 录用日期:  2023-11-07
  • 网络出版日期:  2023-11-07
  • 刊出日期:  2024-08-20

目录

    /

    返回文章
    返回