CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水平井PDC钻头的井底流场数值模拟

李赛 王红波 程书婷 蔡茂盛 张春江

李赛, 王红波, 程书婷, 蔡茂盛, 张春江. 水平井PDC钻头的井底流场数值模拟[J]. 金刚石与磨料磨具工程, 2024, 44(4): 476-484. doi: 10.13394/j.cnki.jgszz.2023.0129
引用本文: 李赛, 王红波, 程书婷, 蔡茂盛, 张春江. 水平井PDC钻头的井底流场数值模拟[J]. 金刚石与磨料磨具工程, 2024, 44(4): 476-484. doi: 10.13394/j.cnki.jgszz.2023.0129
LI Sai, WANG Hongbo, CHENG Shuting, CAI Maosheng, ZHANG Chunjiang. Numerical simulation of bottomhole flow field of PDC bit in horizontal well[J]. Diamond & Abrasives Engineering, 2024, 44(4): 476-484. doi: 10.13394/j.cnki.jgszz.2023.0129
Citation: LI Sai, WANG Hongbo, CHENG Shuting, CAI Maosheng, ZHANG Chunjiang. Numerical simulation of bottomhole flow field of PDC bit in horizontal well[J]. Diamond & Abrasives Engineering, 2024, 44(4): 476-484. doi: 10.13394/j.cnki.jgszz.2023.0129

水平井PDC钻头的井底流场数值模拟

doi: 10.13394/j.cnki.jgszz.2023.0129
详细信息
    作者简介:

    王红波,1978年生,博士后、硕导。主要研究方向:钻井材料与机具、采油设备及破岩机理。E-mail:tmwangbo@163.com

  • 中图分类号: TQ164; TG74; TG58; TE921.1

Numerical simulation of bottomhole flow field of PDC bit in horizontal well

  • 摘要: 为了解决页岩水平井岩屑运移困难、钻头泥包等问题,提高聚晶金刚石复合片(polycrystalline diamond compact,PDC)PDC钻头在钻井过程中的钻井效率和使用寿命,采用数值模拟方法、低雷诺数k-ԑ湍流模型建立井底的流场模型,对PDC钻头的水力结构在不同钻井液排量、PDC钻头转速和岩屑粒径工况下的井底流场变化和岩屑运动状态进行分析并优化改进。结果表明:重力作用对低排量下的岩屑运动状态影响较大,当钻井液排量增加到一定程度后,岩屑运移效率变化较小;在旋转工况下,钻井液排量和钻头转速不匹配,降低了钻井液的冲刷作用和岩屑运移效率;在一定排量和钻头转速下,钻头转速对大粒径岩屑运移效率的提升作用大于对小粒径岩屑的;在相同的喷嘴面积下,优化后的8喷嘴钻头岩屑运移效率优于6喷嘴钻头的;相比非等径喷嘴组合,等径喷嘴组合的性能表现更均衡。

     

  • 图  1  PDC钻头简化模型

    Figure  1.  PDC drill bit simplified model

    图  2  水平井井底流场模型

    Figure  2.  Horizontal well bottom hole flow field model

    图  3  网格无关性验证

    Figure  3.  Mesh independence verification

    图  4  井底壁面流速分布

    Figure  4.  Flow velocity distribution on wellbore wall

    图  5  PDC钻头侧面岩屑运移状态

    Figure  5.  Cuttings migration state on the side of PDC bit

    图  6  井底岩屑滞留量

    Figure  6.  Cuttings retention at bottom hole

    图  7  不同转速下的井底壁面流速分布

    Figure  7.  Flow velocity distribution of bottom-hole at different rotatind speeds

    图  8  不同转速下的侧面钻井液流线

    Figure  8.  Drilling fluid streamlines on the side at different rotational speeds

    图  9  不同转速下的岩屑颗粒数量累积

    Figure  9.  Accumulation of cuttings particle quantities at different rotational speeds

    图  10  不同转速下的岩屑颗粒平均速度

    Figure  10.  Average velocity of cuttings particles at different rotational speeds

    图  11  不同粒径岩屑颗粒数量累积

    Figure  11.  Accumulation of cuttings particle quantities of different sizes

    图  12  不同粒径岩屑颗粒平均速度

    Figure  12.  Average velocity of cuttings particles of different size

    图  13  8喷嘴井底壁面流速分布

    Figure  13.  Velocity distribution on bottom wall of eight-nozzle well

    图  14  不同喷嘴数量下的岩屑滞留量

    Figure  14.  Debris retention under different nozzle numbers

    图  15  不同喷嘴组合井底壁面流速分布

    Figure  15.  Velocity distribution on the bottom wall of different nozzle combinations

    图  16  不同喷嘴组合岩屑滞留量

    Figure  16.  Debris retention of different nozzle combinations

  • [1] 张家希, 于家庆, GALCHENKO R, 等. 北美非常规油气超长水平井优快钻井技术及实例分析 [J]. 钻探工程,2021,48(8):1-11.

    ZHANG Jiaxi, YU Jiaqing, GALCHENKO R, et al. North America unconventional long lateral well fast-drilling technology with case study [J]. Drilling Engineering,2021,48(8):1-11.
    [2] 胡德高, 黄文君, 石小磊, 等. 页岩气水平钻井延伸极限预测与参数优化 [J]. 科学技术与工程,2021,21(17):7053-7058.

    HU Degao, HUANG Wenjun, SHI Xiaolei, et al. Prediction of extension limit and parameter optimization of shale gas horizontal drilling [J]. Science Technology and Engineering,2021,21(17):7053-7058.
    [3] 刘清友, 朱海燕, 陈鹏举. 地质工程一体化钻井技术研究进展及攻关方向:以四川盆地深层页岩气储层为例 [J]. 天然气工业,2021,41(1):178-188.

    LIU Qingyou, ZHU Haiyan, CHEN Pengju. Research progress and direction of geology-engineering integrated drilling technology: A case study on the deep shale gas reservoirs in the Sichuan Basin [J]. Natural Gas Industry,2021,41(1):178-188.
    [4] 胡郁乐, 胡晨, 张恒春, 等. 钻头泥包原因分析及松科二井防泥包钻井液的应用 [J]. 煤田地质与勘探,2020,48(5):254-261.

    HU Yule, HU Chen, ZHANG Hengchun, et al. Analysis of bit balling and application of the balling-preventing drilling fluid in Well Songke-2 [J]. Coal Geology & Exploration,2020,48(5):254-261.
    [5] 况雨春, 张锐, 罗金武, 等. 水平井PDC钻头井下颗粒流数值模拟研究 [J]. 石油机械,2019,47(7):36-42.

    KUANG Yuchun, ZHANG Rui, LUO Jinwu, et al. Numerical simulation of downhole particle flow in horizontal well with PDC bit [J]. China Petroleum Machinery,2019,47(7):36-42.
    [6] 罗金武, 况雨春, 张锐, 等. 基于CFD-DEM耦合的水平井PDC钻头水力结构研究 [J]. 工程设计学报,2020,27(5):636-644.

    LUO Jinwu, KUANG Yuchun, ZHANG Rui, et al. Research on hydraulic structure of PDC bit in horizontal well based on CFD-DEM coupling [J]. Chinese Journal of Engineering Design,2020,27(5):636-644.
    [7] 胡金帅, 张光伟, 陈雨, 等. 基于CFD-DEM耦合的导向钻头井底岩屑运移特性分析 [J]. 中国粉体技术,2022,28(6):37-48.

    HU Jinshuai, ZHANG Guangwei, CHEN Yu, et al. CFD-DEM coupling-based analysis of rock chip transport characteristics at bottom of rotary-guided drill bit [J]. China Powder Science and Technology,2022,28(6):37-48.
    [8] MOSLEMI A A, RAHMANI R, GRAHAM R, et al. Hydraulic design of shale drill bit using an integrated numerical and experimental approach: SPE/IADC drilling conference and exhibition [C]// London: SPE/IADC, 2015.
    [9] 聂欣, 张玉洲, 张童伟, 等. 6种低雷诺数k-ε模型在三维附壁剪切流中的数值模拟与对比分析 [J]. 中国电机工程学报,2017,37(24):7247-7254.

    NIE Xin, ZHANG Yuzhou, ZHANG Tongwei, et al. Comparative analysis and numerical simulation about six low Reynolds number k-ε models in near-wall shear flow [J]. Proceedings of the CSEE,2017,37(24):7247-7254.
    [10] ABE K, KONDOH T, NAGANO Y. A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows—I. Flow field calculations [J]. International Journal of Heat & Mass Transfer,2016,37(1):139-151.
    [11] ZHANG F, MISKA S, YU M, et al. A unified transient solid-liquid two-phase flow model for cuttings transport-modelling part [J]. Journal of Petroleum Science & Engineering,2018,166:146-156.
    [12] 罗金武. 基于CFD-DEM耦合的水平井PDC钻头井底流场研究 [D]. 成都: 西南石油大学, 2018.

    LUO Jinwu. Research on bottomhole flow field of PDC bit in horizontal well based on CFD-DEM coupling [D]. Chengdu: Southwest Petroleum University, 2018.
    [13] 赖科, 马欣. 垂直旋转流场中单颗粒运动状态判别及受力分析 [J]. 计算力学学报,2019,36(1):59-64.

    LAI Ke, MA Xin. Analysis of single particle force and movement condition in vertical rotational flow field [J]. Chinese Journal of Computational Mechanics,2019,36(1):59-64.
    [14] 范宇, 方永, 吴鹏程, 等. 页岩气钻井岩屑运移规律仿真分析 [J]. 科学技术与工程,2020,20(28):11532-11538.

    FAN Yu, FANG Yong, WU Pengcheng, et al. Simulation analysis of cuttings migration in shale gas drilling [J]. Science Technology and Engineering,2020,20(28):11532-11538.
    [15] 汪皖, 马卫国, 王晓蒙. 带旋转管柱连续管钻井岩屑运移研究 [J]. 石油机械,2019,47(5):38-43.

    WANG Wan, MA Weiguo, WANG Xiaomeng. Research on cuttings transportation in coiled tubing drilling with rotary drillpipe [J]. China Petroleum Machinery,2019,47(5):38-43.
  • 加载中
图(16)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  47
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-15
  • 修回日期:  2023-10-18
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2024-08-20

目录

    /

    返回文章
    返回