CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合剂比例和cBN粒度配比对PcBN复合材料微观结构和性能的影响

邹芹 董培航 李艳国 袁振雄 武迪 罗永安

邹芹, 董培航, 李艳国, 袁振雄, 武迪, 罗永安. 结合剂比例和cBN粒度配比对PcBN复合材料微观结构和性能的影响[J]. 金刚石与磨料磨具工程, 2024, 44(2): 185-192. doi: 10.13394/j.cnki.jgszz.2023.0090
引用本文: 邹芹, 董培航, 李艳国, 袁振雄, 武迪, 罗永安. 结合剂比例和cBN粒度配比对PcBN复合材料微观结构和性能的影响[J]. 金刚石与磨料磨具工程, 2024, 44(2): 185-192. doi: 10.13394/j.cnki.jgszz.2023.0090
ZOU Qin, DONG Peihang, LI Yanguo, YUAN Zhenxiong, WU Di, LUO Yongan. Effects of the ratio of binder and the ratio of cBN particle size on the microstructure and properties of PcBN composites[J]. Diamond & Abrasives Engineering, 2024, 44(2): 185-192. doi: 10.13394/j.cnki.jgszz.2023.0090
Citation: ZOU Qin, DONG Peihang, LI Yanguo, YUAN Zhenxiong, WU Di, LUO Yongan. Effects of the ratio of binder and the ratio of cBN particle size on the microstructure and properties of PcBN composites[J]. Diamond & Abrasives Engineering, 2024, 44(2): 185-192. doi: 10.13394/j.cnki.jgszz.2023.0090

结合剂比例和cBN粒度配比对PcBN复合材料微观结构和性能的影响

doi: 10.13394/j.cnki.jgszz.2023.0090
基金项目: 河北省高等学校科学技术研究项目(ZD2021099)。
详细信息
    作者简介:

    邹芹,女,1978年生,博士、教授。主要研究方向:超硬材料、高熵陶瓷等。E-mail:zq@ysu.edu.cn

    李艳国,男,1978年生,博士、副研究员。主要研究方向:超硬材料、先进钢材料等。E-mail:lyg@ysu.edu.cn

  • 中图分类号: TB333; TG58

Effects of the ratio of binder and the ratio of cBN particle size on the microstructure and properties of PcBN composites

  • 摘要: 在高温高压条件下制备了聚晶立方氮化硼(PcBN)复合材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)等研究了结合剂配比和立方氮化硼(cBN)粒度对PcBN复合材料的成分、微观结构、显微硬度和磨耗比的影响。实验结果表明:在压力5.5 GPa,温度1400 ℃,保温10 min的烧结条件下,当V(TiN0.3)∶V(AlN)=70∶30时,PcBN复合材料性能较为优异,硬度最高达到22.7 GPa,磨耗比达到149.2;当PcBN复合材料中cBN粒度组合为V(0.5~1 μm)∶V(2~5 μm)∶V(5~10 μm) =3∶5∶2时,颗粒之间的堆积密度达到最高,性能也达到最优。

     

  • 图  1  复合材料的硬度、磨耗比随TiN0.3与AlN体积比的变化

    Figure  1.  Variation of hardness and abrasive ratio of composites with variation of TiN0.3 to AlN volume ratio

    图  2  TiN0.3和AlN体积比为70∶30和60∶40时PcBN复合材料的XRD图

    Figure  2.  XRD image of PcBN composites with TiN0.3 and AlN ratios of 70∶30 and 60∶40

    图  3  cBN颗粒的SEM图

    Figure  3.  SEM image of cBN particles

    图  4  S1与S2组PcBN复合材料断口SEM图

    Figure  4.  SEM images of fractures of S1 and S2 PcBN composites

    (a) VTiN0.3VAlN=60∶40(b) VTiN0.3VAlN=70∶30

    图  5  TiN0.3/AlN/cBN系列PcBN复合材料断口的SEM图

    Figure  5.  SEM image of TiN0.3/AlN/cBN PcBN composites fracture

    VTiN0.3VAlN=70∶30

    图  6  PcBN复合材料的硬度、磨耗比随cBN粒度组合变化图

    Figure  6.  Images of hardness and abrasive ratio of PcBN composites with the combination of cBN particle size

    图  7  粒度组合为V1V2V3=3∶5∶2的PcBN复合材料断口SEM图

    Figure  7.  SEM images of the fracture of PcBN composite with particle size combination of V1V2V3=3∶5∶2

    表  1  PcBN复合材料样品编号以及原料配比

    Table  1.   PcBN composite sample numbers and raw material ratios

    编号cBN粒度组合结合剂配比
    S1V1V2V3=
    5∶3∶2
    VTiN0.3VAlN=
    70∶30
    S2VTiN0.3VAlN=
    60∶40
    V1V2V3=
    5∶3∶2
    S3V1V2V3=
    4∶4∶2
    VTiN0.3VAlNVTaC=
    64∶27∶9
    V1V2V3=
    3∶5∶2
    V1V2V3=
    5∶3∶2
    S4V1V2V3=
    4∶4∶2
    VTiN0.3VAlNVWCVVC=
    56∶24∶10∶10
    V1V2V3=
    3∶5∶2
    V1V2V3=
    5∶3∶2
    S5V1V2V3=
    4∶4∶2
    VTiN0.3VAlNVTaCVNbC=
    62.3∶26.7∶9.0∶2.0
    V1V2V3=
    3∶5∶2
    下载: 导出CSV

    表  2  eZAF 智能定量结果(物质的量分数)

    Table  2.   eZAF intelligent quantification results (mole fraction)

    元素点1点 2点 3点 4点 5点 6
    B K38.430.4428.3140.807.8922.12
    C K5.915.6719.2936.717.9716.02
    N K48.0335.3545.710.0843.7228.67
    Al K4.2656.603.155.3835.733.53
    Ti K3.331.903.4616.854.6129.08
    Ta L0.030.040.070.170.080.57
    下载: 导出CSV
  • [1] WANG W J, LI Z H, ZHU Y M, et al. Effect of diamond additive on the properties of cBN composites with Al–Si as binder by HTHP sintering [J]. Ceramics International,2022,48(19):28830-28834. doi: 10.1016/j.ceramint.2022.03.028
    [2] WANG S Y, LI Z H, ZHU Y M, et al. Enhanced mechanical properties of cBN-Al-Si3N4 composites by introducing diamond [J]. Diamond and Related Materials,2022,121:108808. doi: 10.1016/j.diamond.2021.108808
    [3] CHEN L, STAHL J E, ZHAO W, et al. Assessment on abrasiveness of high chromium cast iron material on the wear performance of PCBN cutting tools in dry machining [J]. Journal of Materials Processing Technology,2018,255:110-120. doi: 10.1016/j.jmatprotec.2017.11.054
    [4] KUMAR R, ANTONOV M, KLIMCZYK P, et al. Effect of cBN content and additives on sliding and surface fatigue wear of spark plasma sintered Al2O3-cBN composites [J]. Wear,2022(494/495):204250. doi: 10.1016/j.wear.2022.204250
    [5] JI H L, LI Z H, LIU M. Structural and mechanical properties of cBN composites by regulating particle size distribution and holding time [J]. International Journal of Refractory Metals and Hard Materials,2021,100:105635. doi: 10.1016/j.ijrmhm.2021.105635
    [6] LIU Y, SUN A L, ZHONG S L, et al. Effect of Al Ti content on mechanical properties of in-situ synthesized PcBN composites [J]. Diamond and Related Materials,2020,109:108068. doi: 10.1016/j.diamond.2020.108068
    [7] ZOU Q, WU H Y, LI Y G, et al. Effects of carbon nanotubes and sintering parameters on microstructure and properties of PCD [J]. Diamond and Related Materials,2022,128:109293. doi: 10.1016/j.diamond.2022.109293
    [8] MO P C, CHEN C, JIA G, et al. Effect of tungsten content on microstructure and mechanical properties of PCBN synthesized in cBN-Ti-Al-W system [J]. International Journal of Refractory Metals and Hard Materials,2020,87:105138. doi: 10.1016/j.ijrmhm.2019.105138
    [9] SLIPCHENKO K, BUSHLYA V, STRATIICHUK D, et al. Multicomponent binders for PcBN performance enhancement in cutting tool applications [J]. Journal of the European Ceramic Society,2022,42(11):4513-4527. doi: 10.1016/j.jeurceramsoc.2022.04.022
    [10] 陈俊云, 孙磊, 靳田野, 等. 无黏结剂层状BN增韧cBN刀具材料的研究 [J]. 无机材料学报,2022,37(6):623-628. doi: 10.15541/jim20210300

    CHEN Junyun, SUN Lei, JIN Tianye, et al. Binderless layered BN toughened cBN for ultra-precision cutting [J]. Journal of Inorganic Materials,2022,37(6):623-628. doi: 10.15541/jim20210300
    [11] CHEN S, FAN H Z, SU Y F, et al. Influence of binder systems on sintering characteristics, microstructures, and mechanical properties of PcBN composites fabricated by SPS [J]. Journal of Advanced Ceramics,2022,11(2):321-330. doi: 10.1007/s40145-021-0536-4
    [12] GORDON S, ROA J J, RODRIGUEZ-SUAREZ T, et al. Influence of microstructural assemblage of the substrate on the adhesion strength of coated PcBN grades [J]. Ceramics International,2022,48(15):22354-22363. doi: 10.1016/j.ceramint.2022.04.236
    [13] 王艳芝, 张旺玺, 孙长红, 等. 氮化硼系列材料的合成制备及应用研究进展 [J]. 陶瓷学报,2018,39(6):661-671. doi: 10.13957/j.cnki.tcxb.2018.06.002

    WANG Yanzhi, ZHANG Wangxi, SUN Changhong, et al. The development of the applications and synthesis of boron nitride materials [J]. Journal of Ceramics,2018,39(6):661-671. doi: 10.13957/j.cnki.tcxb.2018.06.002
    [14] CHEN C, MO P C, CHEN J R, et al. Effects of different binder systems on the reaction mechanism, microstructure and mechanical properties of PcBN composites [J]. Diamond and Related Materials,2023,134:109797. doi: 10.1016/j.diamond.2023.109797
    [15] 邓华, 潘天浩, 张志超, 等. 共价键化合物陶瓷结合剂对干切削PcBN刀具复合材料的影响 [J]. 超硬材料工程,2017,29(3):1-12. doi: 10.3969/j.issn.1673-1433.2017.03.001

    DENG Hua, PAN Tianhao, ZHANG Zhichao, et al. The influence of covalent compound ceramic bond on composite materials of PcBN cutting tools for drycutting [J]. Superhard Material Engineering,2017,29(3):1-12. doi: 10.3969/j.issn.1673-1433.2017.03.001
    [16] CHU D L, MA H G, ZHANG Z F, et al. Synthesis and characterization of cubic boron nitride (Al)-Al2O3 composites under high pressure and high temperature conditions [J]. International Journal of Refractory Metals and Hard Materials,2022,106:105876. doi: 10.1016/j.ijrmhm.2022.105876
    [17] 梁宝岩, 张旺玺, 冯燕翔, 等. 立方氮化硼用量及粒度对其同钛铝碳结合剂的反应程度的影响 [J]. 金刚石与磨料磨具工程,2016,36(5):38-41. doi: 10.13394/j.cnki.jgszz.2016.5.0007

    LIANG Baoyan, ZHANG Wangxi, FENG Yanxiang, et al. Fabrication and microstructure analys is of Ti3AlC2-CBN composites [J]. Diamond & Abrasives Engineering,2016,36(5):38-41. doi: 10.13394/j.cnki.jgszz.2016.5.0007
    [18] WANG H, DENG F M, ZHANG Z W, et al. Study on the properties and fracture mode of pure polycrystalline cubic boron nitride with different particle sizes [J]. International Journal of Refractory Metals and Hard Materials,2021,95:105446. doi: 10.1016/j.ijrmhm.2020.105446
    [19] 范文捷, 刘芳, 董艳丽. CBN粒度及组装方式对PCBN性能影响的研究 [J]. 金刚石与磨料磨具工程,2009,4(2):67-73. doi: 10.13394/j.cnki.jgszz.2009.02.017

    FAN Wenjie, LIU Fang, DONG Yanli. Effect of grain size of CBN and ssemblmodeon characteristics of PCBN [J]. Diamond & Abrasives Engineering,2009,4(2):67-73. doi: 10.13394/j.cnki.jgszz.2009.02.017
    [20] WU J K, ZHANG Z C, WANG H K, et al. High-pressure synthesis of tungsten carbide–cubic boron nitride (WC–cBN) composites: Effect of cBN particle size and volume fraction on their microstructure and properties [J]. International Journal of Refractory Metals and Hard Materials,2023,110:106037. doi: 10.1016/j.ijrmhm.2022.106037
    [21] XU S, WANG M Z, QIAO L N, et al. Enhancing the sintering ability of TiNx by introduction of nitrogen vacancy defects [J]. Ceramics International,2015,41(8):9514-9520. doi: 10.1016/j.ceramint.2015.04.009
    [22] 苏君, 杨帆. 烧结助剂含量对PcBN复合材料显微结构和力学性能的影响 [J]. 中国陶瓷,2022,58(2):32-36. doi: 10.16521/j.cnki.issn.1001-9642.2022.02.005

    SU Jun, YANG Fan. Effect of sintering intering content on microstructure and mechanical property of PcBN composites [J]. China Ceramics,2022,58(2):32-36. doi: 10.16521/j.cnki.issn.1001-9642.2022.02.005
    [23] WANG Z W, LI Y G, ZOU Q, et al. Effect of sintering parameters on microstructure and properties of nanopolycrystalline diamond bulks synthesized from onion-like carbon [J]. Diamond and Related Materials,2021,111:108233. doi: 10.1016/j.diamond.2020.108233
    [24] 陈超, 莫培程, 林峰, 等. cBN-TiN-Al合成PcBN复合片及其性能研究 [J]. 中国陶瓷,2019,55(7):36-41. doi: 10.16521/j.cnki.issn.1001-9642.2019.07.006

    CHEN Chao, MO Peicheng, LIN Feng, et al. Synthesis of PcBN composite by cBN-TiN-Al and performance research [J]. China Ceramics,2019,55(7):36-41. doi: 10.16521/j.cnki.issn.1001-9642.2019.07.006
    [25] 邓华, 邢英, 王明智, 等. PcBN烧结体中TiN0.3/AlN与cBN的界面关系研究 [J]. 金刚石与磨料磨具工程,2016,36(3):38-42. doi: 10.13394/j.cnki.jgszz.2016.3.0008

    DENG Hua, XING Ying, WANG Mingzhi, et al. Research on the interface relation between TiN0.3/AlN and cBN in PcBN sintering body [J]. Diamond & Abrasives Engineering,2016,36(3):38-42. doi: 10.13394/j.cnki.jgszz.2016.3.0008
    [26] 谢辉, 冯飞, 方海江, 等. 不同组分cBN-TiC-Al材料对PcBN性能的影响 [J]. 金刚石与磨料磨具工程,2013,33(1):31-35. doi: 10.13394/j.cnki.jgszz.2013.01.010

    XIE Hui, FENG Fei, FANG Haijiang, et al. Influence of ratios of cBN-TiC-Al on PCBN properties [J]. Diamond & Abrasives Engineering,2013,33(1):31-35. doi: 10.13394/j.cnki.jgszz.2013.01.010
    [27] 李工, 戴凤祥, 张翼飞, 等. Al系高熵合金高温氧化性能研究进展 [J]. 燕山大学学报,2021,45(3):189-201. doi: 10.3969/j.issn.1007-791X.2021.03.001

    LI Gong, DAI Fengxiang, ZHANG Yifei, et al. Research progress of high-temperture oxidation properties of Al-based high entropy alloys [J]. Journal of Yanshan University,2021,45(3):189-201. doi: 10.3969/j.issn.1007-791X.2021.03.001
    [28] 邹芹, 李园园, 李艳国. 铁基自润滑复合材料增强的研究进展与展望 [J]. 燕山大学学报,2021,45(5):377-386. doi: 10.3969/j.issn.1007-791X.2021.05.001

    ZOU Qin, LI Yuanyuan, LI Yanguo. Progress and prospect of iron-based self-lubricating composites reinforcement [J]. Journal of Yanshan University,2021,45(5):377-386. doi: 10.3969/j.issn.1007-791X.2021.05.001
    [29] 邹芹, 关勇, 李艳国, 等. TiAl合金及其复合材料的研究进展与发展趋势 [J]. 燕山大学学报,2020,44(2):95-107. doi: 10.3969/j.issn.1007-791X.2020.02.001

    ZOU Qin, GUAN Yong, LI Yanguo, et al. Advances and perspectives of TiAl alloy and its composites [J]. Journal of Yanshan University,2020,44(2):95-107. doi: 10.3969/j.issn.1007-791X.2020.02.001
    [30] XU S, WANG M Z, QIAO L N, et al. Influence of nitrogen vacancy defects incorporation on densification behaviour of spark plasma sintered non-stoichiometric TiN1−x [J]. Advances in applied ceramics,2015,114(5):256-260. doi: 10.1179/1743676114Y.0000000216
    [31] 韦家新, 林峰, 冯吉福. 影响立方氮化硼复合片耐磨性的工艺因素研究 [J]. 超硬材料工程,2006(3):16-18.

    WEI Jiaxin, LIN Feng, FENG Jifu. Technological factors influencing wear resistance of PCBN [J]. Superhard Material Engineering,2006(3):16-18.
    [32] ZOU Q, DONG P H, LI Y G, et al. Preparation and characterization of PcBN composites with high entropy ceramic bonding [J]. Diamond and Related Materials,2023,131:109536. doi: 10.1016/j.diamond.2022.109536
    [33] 张立, 王喆, 陈述, 等. 过渡族金属碳化物在WC-Co硬质合金中的界面偏析与固溶行为 [J]. 硬质合金,2014,31(1):49-59.

    ZHANG LI, WANG Zhe, CHEN Shu, et al. Boundary segregation and solid solution behaviors of transitional metal carbides in WC-Co cemented carbides [J]. Cemented Carbides,2014,31(1):49-59.
    [34] 邹芹, 李壮, 李艳国, 等. 中熵碳化物陶瓷TiC0.4/VC/NbC结合的WC基硬质合金合成与性能 [J]. 中国有色金属学报,2022,6(33):1914-1923. doi: 10.11817/j.ysxb.1004.0609.2022-43353

    ZOU Qin, LI Zhang, LI Yanguo, et al. Synthesis and properties of WC-based cemented carbide combined with TiC0.4/VC/NbC medium entropy carbide ceramics [J]. The Chinese Journal of Nonferrous Metals,2022,6(33):1914-1923. doi: 10.11817/j.ysxb.1004.0609.2022-43353
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  104
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-16
  • 修回日期:  2023-09-13
  • 录用日期:  2023-11-07
  • 网络出版日期:  2023-11-07
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回