CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳化硅陶瓷飞秒激光加工表面物化特性及去除过程研究

徐东区 王成勇 杜策之 丁峰 胡小月

徐东区, 王成勇, 杜策之, 丁峰, 胡小月. 碳化硅陶瓷飞秒激光加工表面物化特性及去除过程研究[J]. 金刚石与磨料磨具工程, 2024, 44(4): 508-517. doi: 10.13394/j.cnki.jgszz.2023.0088
引用本文: 徐东区, 王成勇, 杜策之, 丁峰, 胡小月. 碳化硅陶瓷飞秒激光加工表面物化特性及去除过程研究[J]. 金刚石与磨料磨具工程, 2024, 44(4): 508-517. doi: 10.13394/j.cnki.jgszz.2023.0088
XU Dongqu, WANG Chengyong, DU Cezhi, DING Feng, HU Xiaoyue. Physical and chemical characterization of the surface and removal process of silicon carbide ceramics by femtosecond laser processing[J]. Diamond & Abrasives Engineering, 2024, 44(4): 508-517. doi: 10.13394/j.cnki.jgszz.2023.0088
Citation: XU Dongqu, WANG Chengyong, DU Cezhi, DING Feng, HU Xiaoyue. Physical and chemical characterization of the surface and removal process of silicon carbide ceramics by femtosecond laser processing[J]. Diamond & Abrasives Engineering, 2024, 44(4): 508-517. doi: 10.13394/j.cnki.jgszz.2023.0088

碳化硅陶瓷飞秒激光加工表面物化特性及去除过程研究

doi: 10.13394/j.cnki.jgszz.2023.0088
基金项目: 广东省重点领域研发计划项目(2020B090924005)。
详细信息
    作者简介:

    徐东区:

    通讯作者:

    王成勇,男,1964年生,博士、教授、博士生导师。主要研究方向:难加工材料加工、生物组织加工与医疗器械研究。E-mail:cywang@gdut.edu.cn

  • 中图分类号: TN249;TG74

Physical and chemical characterization of the surface and removal process of silicon carbide ceramics by femtosecond laser processing

  • 摘要: 硬脆材料超快激光加工可有效抑制加工损伤,是碳化硅陶瓷精密加工的重要手段。采用飞秒激光,在不同能量密度和脉冲数下对碳化硅陶瓷进行加工,探究激光参数对其表面形貌特征、化学组分和微孔加工的影响,分析表面微观结构的演变规律和材料去除过程。结果表明:单脉冲加工碳化硅陶瓷表面形成沸腾区和熔化区,计算得到形成特征区的阈值能量分别为3.779、0.860 J/cm2;碳化硅陶瓷的去除过程是光热作用和光化学作用先后作用的结果,在温度较高的中心区域的作用机制是材料的蒸发作用,其他低温区域则是材料的热分解和氧化;微孔直径和烧蚀深度随着能量密度和脉冲数量的增大而增大。本研究从材料物理化学特性变化角度进一步完善了碳化硅陶瓷飞秒激光加工机理,为碳化硅陶瓷零部件的精密无损伤加工应用提供理论参考。

     

  • 图  1  碳化硅陶瓷飞秒激光脉冲加工实验

    Figure  1.  Femtosecond laser pulse processing experiments on silicon carbide ceramics

    图  2  碳化硅陶瓷不同能量密度下单脉冲加工烧蚀形貌

    Figure  2.  Ablation morphology of silicon carbide ceramic with single pulse processing under different energy densities

    图  3  飞秒激光单脉冲加工碳化硅陶瓷的特征区及形貌特征

    (a) 沸腾区; (b) 沸腾区形貌特征; (c) 熔化区; (d) 熔化区形貌特征

    Figure  3.  Characteristic zone of silicon carbide ceramics processed by single pulse of femtosecond laser and morphological characteristics

    (a) Boiling zone; (b) Morphological characteristics of boiling zone; (c) Melting zone; (d) Morphological characteristics of melting zone

    图  4  不同能量密度下碳化硅陶瓷的熔化和蒸发阈值

    Figure  4.  Melting and evaporation thresholds of silicon carbide at different laser energy densities

    图  5  激光能量密度对烧蚀形貌的影响

    Figure  5.  Effect of laser energy density on ablation morphology

    n=20

    图  6  烧蚀形貌局部放大图

    Figure  6.  Local magnification of ablation morphology

    9.46 J/cm2n=20

    图  7  脉冲数对加工表面形貌的影响

    Figure  7.  Effect of pulse number on topography of machined surface

    9.46 J/cm2

    图  8  微结构的截面STEM 图

    Figure  8.  Cross-sectional STEM images of microstructures

    图  9  微结构截面的TEM观察结果

    Figure  9.  Cross-sectional TEM observations of microstructures

    图  10  加工区域成分分析

    Figure  10.  Component analysis of machined area

    图  11  加工前后材料表面的XPS分析

    Figure  11.  XPS analysis of material surface before and after processing

    图  12  材料去除过程分析

    Figure  12.  Analysis of material removal process

    图  13  激光参数对微孔直径的影响

    Figure  13.  Effect of laser parameters on diameter of micropores

    图  14  激光参数对烧蚀深度的影响

    Figure  14.  Effect of laser parameters on ablation depth

  • [1] 李辰冉, 谢志鹏, 康国兴, 等. 国内外碳化硅陶瓷材料研究与应用进展 [J]. 硅酸盐通报,2020,39(5):1353-1370. doi: 10.16552/j.cnki.issn1001-1625.2020.05.001

    LI Chenran, XIE Zhipeng, KANG Guoxing, et al. Research and application progress of SiC ceramics: A review [J]. Bulletin of the Chinese Ceramic Society,2020,39(5):1353-1370. doi: 10.16552/j.cnki.issn1001-1625.2020.05.001
    [2] WILLANDER M, FRIESEL M, WAHAB Q, et al. Silicon carbide and diamond for high temperature device applications [J]. Journal of Materials Science:Materials in Electronics,2006,17:1-25.
    [3] NASLAIN R, GUETTE A, REBILLAT F, et al. Boron-bearing species in ceramic matrix composites for long-term aerospace applications [J]. Journal of Solid State Chemistry,2004,177(2):449-456. doi: 10.1016/j.jssc.2003.03.005
    [4] AMSELLEM W, SARVESTANI H Y, PANKOV V, et al. Deep precision machining of SiC ceramics by picosecond laser ablation [J]. Ceramics International,2023,49(6):9592-9606. doi: 10.1016/j.ceramint.2022.11.129
    [5] GOEL S. The current understanding on the diamond machining of silicon carbide [J]. Journal of Physics D:Applied Physics,2014,47(24):243001. doi: 10.1088/0022-3727/47/24/243001
    [6] QU S, GONG Y, YANG Y, et al. Surface topography and roughness of silicon carbide ceramic matrix composites [J]. Ceramics International,2018,44(12):14742-14753. doi: 10.1016/j.ceramint.2018.05.104
    [7] LIN Q, FAN Z J, WANG W, et al. The effect of spot overlap ratio on femtosecond laser planarization processing of SiC ceramics [J]. Optics & Laser Technology,2020,129:106270.
    [8] 赵清亮, 姜涛, 董志伟, 等. 飞秒激光加工SiC的烧蚀阈值及材料去除机理 [J]. 机械工程学报,2010,46(21):172-177. doi: 10.3901/JME.2010.21.172

    ZHAO Qingliang, JIANG Tao, DONG Zhiwei, et al. Ablation threshold and material removal mechanisms of SiC processed by femtosecond laser [J]. Journal of Mechanical Engineering,2010,46(21):172-177. doi: 10.3901/JME.2010.21.172
    [9] 李卫波. 飞秒激光抛光碳化硅陶瓷材料的工艺过程研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    LI Weibo. Research on femtosecond laser purse polishing of silicon carbide ceramic material [D]. Harbin: Harbin Institute of Technology, 2010
    [10] DONG Y Y, MOLIAN P. Femtosecond pulsed laser ablation of 3CSiC thin film on silicon [J]. Applied Physics A,2003,77:839-846. doi: 10.1007/s00339-003-2103-y
    [11] 李俭国. 超快激光诱导碳化硅表面改性机理研究[D]. 广州: 广东工业大学, 2020.

    LI Jianguo. Study on mechanism of ultra-fast laser induced modification of silicon carbide[D]. Guangzhou: Guangdong University of Technology, 2020
    [12] 李晓宇, 孙会来, 赵方方, 等. 飞秒激光加工SiC模型参数优化设计研究 [J]. 激光与红外,2016,46(8):948-952.

    LI Xiaoyu, SUN Huilai, ZHAO Fangfang, et al. Research on parameters optimization design of femtosecond laser machining SiC model [J]. Laser & Infrared,2016,46(8):948-952.
    [13] 王金舵. 超短脉冲激光与碳化硅相互作用研究 [J]. 科技创新与应用,2022,12(22):79-82+86.

    WANG Jinduo. A study of the interaction between ultrashort pulse laser and silicon carbide [J]. Technology Innovation and Application,2022,12(22):79-82+86.
    [14] SHI H, SONG Q, HOU Y, et al. Investigation of structural transformation and residual stress under single femtosecond laser pulse irradiation of 4H–SiC [J]. Ceramics International,2022,48(17):24276-24282. doi: 10.1016/j.ceramint.2022.03.063
    [15] ŽEMAITIS A, GAIDYS M, BRIKAS M, et al. Advanced laser scanning for highly-efficient ablation and ultrafast surface structuring: Experiment and model [J]. Scientific Reports,2018,8(1):17376. doi: 10.1038/s41598-018-35604-z
    [16] VARLAMOVA O, COSTACHE F, REIF J, et al. Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light [J]. Applied Surface Science,2006,252(13):4702-4706. doi: 10.1016/j.apsusc.2005.08.120
    [17] HIKAGE H, NOSAKA N, MATSUO S. High-spatial-frequency periodic surface structures on steel substrate induced by subnanosecond laser pulses [J]. Applied Physics Express,2017,10(11):112701. doi: 10.7567/APEX.10.112701
    [18] ZHANG Q, WANG C, LIU Y, et al. Picosecond laser machining of deep holes in silicon infiltrated silicon carbide ceramics [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed.,2015,30(3):437-441. doi: 10.1007/s11595-015-1167-9
    [19] READY J F. Effects due to absorption of laser radiation [J]. Journal of Applied Physics,1965,36(2):462-468. doi: 10.1063/1.1714012
    [20] DENG H, UEDA M, YANANURA K. Characterization of 4H-SiC (0001) surface processed by plasma-assisted polishing[J]. International Journal of Advanced Manufacturing Technology, 2014, 72:156-159.
  • 加载中
图(14)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  139
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-11
  • 修回日期:  2023-09-12
  • 录用日期:  2023-11-07
  • 网络出版日期:  2023-11-07
  • 刊出日期:  2024-08-20

目录

    /

    返回文章
    返回