CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

主轴式滚磨光整加工直齿圆柱齿轮齿面的颗粒作用行为

樊宇 李文辉 杨胜强 李秀红 杨英波 冯利东

樊宇, 李文辉, 杨胜强, 李秀红, 杨英波, 冯利东. 主轴式滚磨光整加工直齿圆柱齿轮齿面的颗粒作用行为[J]. 金刚石与磨料磨具工程, 2023, 43(6): 772-781. doi: 10.13394/j.cnki.jgszz.2023.0002
引用本文: 樊宇, 李文辉, 杨胜强, 李秀红, 杨英波, 冯利东. 主轴式滚磨光整加工直齿圆柱齿轮齿面的颗粒作用行为[J]. 金刚石与磨料磨具工程, 2023, 43(6): 772-781. doi: 10.13394/j.cnki.jgszz.2023.0002
FAN Yu, LI Wenhui, YANG Shengqiang, LI Xiuhong, YANG Yingbo, FENG Lidong. Particle action behavior on the tooth surface of straight cylindrical gears by spindle finishing[J]. Diamond & Abrasives Engineering, 2023, 43(6): 772-781. doi: 10.13394/j.cnki.jgszz.2023.0002
Citation: FAN Yu, LI Wenhui, YANG Shengqiang, LI Xiuhong, YANG Yingbo, FENG Lidong. Particle action behavior on the tooth surface of straight cylindrical gears by spindle finishing[J]. Diamond & Abrasives Engineering, 2023, 43(6): 772-781. doi: 10.13394/j.cnki.jgszz.2023.0002

主轴式滚磨光整加工直齿圆柱齿轮齿面的颗粒作用行为

doi: 10.13394/j.cnki.jgszz.2023.0002
基金项目: 国家自然科学基金(51875389,51975399);中央引导地方科技发展资金(YDZJSX2022B004,YDZJSX2022A020)
详细信息
    通讯作者:

    李文辉,男,1975 年生,教授,博士生导师。主要研究方向:精密零件表面光整加工。E-mail:wenhui_li7190@126.com

  • 中图分类号:  TG58

Particle action behavior on the tooth surface of straight cylindrical gears by spindle finishing

  • 摘要: 为探究主轴式滚磨光整加工中齿轮与颗粒接触界面处的作用行为,基于离散元法(discrete element method, DEM)对主轴式滚磨光整加工进行模拟仿真。首先阐述齿轮附近及齿面接触颗粒的运动形式,然后探究齿轮埋入深度、齿轮和滚筒的转速对齿面接触颗粒相对运动速度及齿面接触力的影响,最后通过实验进行验证。结果表明:主轴式滚磨光整加工对齿轮齿面的作用具有周期性;齿轮上下齿面受力不均匀,上齿面所受接触力是下齿面的1.5~1.8倍。增加齿轮埋入深度主要影响颗粒与齿面的接触力,埋入深度增大75%,齿面接触力增大76%;提升齿轮与滚筒转速则主要影响颗粒与齿面的相对运动速度,齿轮与滚筒转速增大150%,齿面接触颗粒相对运动速度增大148%。且增加齿轮埋入深度可减小齿轮齿面沿轴向的加工差异性,埋入深度由80 mm增大到140 mm后,上下齿面沿轴向的粗糙度下降率由17%和36%变为62%和55%,而改变转速和埋入深度对沿齿廓方向的加工差异性改变不明显。

     

  • 图  1  主轴式滚磨光整加工原理

    Figure  1.  Principle of spindle finishing

    图  2  离散元模拟模型

    Figure  2.  Discrete element simulation model

    图  3  颗粒堆积高度图

    Figure  3.  Height diagram of particle accumulation

    图  4  颗粒运动速度云图

    Figure  4.  Cloud diagram of particle velocity

    图  5  不同方向颗粒速度矢量图

    Figure  5.  Velocity vector diagram of particle in different directions

    图  6  单个齿面上的数据块分布

    Figure  6.  Data block distribution on a single tooth surface

    图  7  1周期内齿面接触颗粒相对速度矢量图

    Figure  7.  Relative velocity vector diagram of of particles in contact with the tooth surface in one cycle

    图  8  不同转速接触力变化

    Figure  8.  Variation of contact forces at different speeds

    图  9  不同深度接触力变化

    Figure  9.  Variation of contact forces at different depths

    图  10  不同转速和深度齿面接触力变化云图

    Figure  10.  Cloud diagram of the variation of tooth contact forces at different speeds and depths

    图  11  不同转速与埋入深度颗粒平均相对速度变化图

    Figure  11.  Chart of the mean relative velocity of particles at different speeds versus burial depth

    图  12  主轴式滚磨光整加工齿轮应变测试实验平台

    Figure  12.  Gear strain test platform of spindle finishing

    图  13  不同位置应力图

    Figure  13.  Stress chart of different positions

    图  14  应力和法向接触力随深度与转速变化图

    Figure  14.  Chart of stress and normal contact force as a function of depth and speed

    图  15  不同深度与转速下粗糙度变化图

    Figure  15.  Roughness variation chart at different depths and speeds

    图  16  不同深度下齿面粗糙度变化图

    Figure  16.  Tooth roughness variation diagram of at different depths

    表  1  材料本征参数[4]

    Table  1.   Material parameters of the model

    材料参数密度 $\rho $ / (kg·m−3)泊松比 $\varepsilon $剪切模量 E / MPa
    滚筒(钢)7 8500.3007 940
    颗粒
    (棕刚玉)
    2 6750.3601 260
    齿轮(40 Cr)7 8700.2778 080
    下载: 导出CSV

    表  2  材料接触参数[4]

    Table  2.   Material contact parameters[4]

    相互作用碰撞恢复
    系数 μ1
    静摩擦
    系数 μ2
    滚动摩擦
    系数 μ3
    颗粒-滚筒0.500.350.10
    颗粒-齿轮0.430.360.10
    颗粒-颗粒0.460.390.10
    下载: 导出CSV

    表  3  滚磨光整加工离散元模拟设计

    Table  3.   Discrete element simulation design for barrel finishing

    齿轮埋入深度 $ {h}_{1} $ / mm滚筒转速 $ {n}_{1} $ / (r·min−1)
    80,110,14012,21,30
    下载: 导出CSV
  • [1] 高玉魁, 赵振业. 齿轮的表面完整性与抗疲劳制造技术的发展趋势 [J]. 金属热处理,2014(4):1-6. doi: 10.13251/j.issn.0254-6051.2014.04.001

    GAO Yukui, ZHAO Zhenye. Surface integrity of gears and the development trend of fatigue-resistant manufacturing technology [J]. Metal Heat Treatment,2014(4):1-6. doi: 10.13251/j.issn.0254-6051.2014.04.001
    [2] 南小侠, 翟婷婷, 韩晓光. 滚磨光整在齿轮加工中的应用技术研究 [J]. 新型工业化,2019,9(7):40-44. doi: 10.19335/j.cnki.2095-6649.2019.07.008

    NAN Xiaoxia, ZHAI Tingting, HAN Xiaoguang. Research on the application technology of roller grinding and finishing in gear machining [J]. New Industrialization,2019,9(7):40-44. doi: 10.19335/j.cnki.2095-6649.2019.07.008
    [3] 罗丽霞, 武增宏. 光整加工对齿轮传动影响的研究 [J]. 机械工程师,2018(11):155-157, 163. doi: 10.3969/j.issn.1002-2333.2018.11.051

    LUO Lixia, WU Zenghong. Study on the effect of finishing machining on gear transmission [J]. Mechanical Engineer,2018(11):155-157, 163. doi: 10.3969/j.issn.1002-2333.2018.11.051
    [4] WANG Na, YANG S Q, ZHAO T T, et al. Experiment and simulation analysis on the mechanism of the spindle barrel finishing [J]. The International Journal of Advanced Manufacturing Technology,2020,109(1):57-74.
    [5] 杨英波, 李文辉, 李东祥, 等. 齿轮类零件滚磨光整加工技术现状及发展思考 [J]. 表面技术,2021,50(12):1-16. doi: 10.16490/j.cnki.issn.1001-3660.2021.12.001

    YANG Yingbo, LI Wenhui, LI Dongxiang, et al. Research status and development thinking of mass finishing for gear parts [J]. Surface Technology,2021,50(12):1-16. doi: 10.16490/j.cnki.issn.1001-3660.2021.12.001
    [6] BUDZISZ W, MARCINIEC A. The new gear finishing method research for highly loaded gears [J]. Aerospace, 2022, 9(131): 1-15.
    [7] UHLMANN E, EULITZ A, DETHLEFS A. Discrete element modelling of drag finishing [J]. Procedia Cirp,2015,31:369-374. doi: 10.1016/j.procir.2015.03.021
    [8] HASHIMOTO F, CHAUDHARI R G, MELKOTE S N. Characteristics and performance of surfaces created by various finishing methods [J]. Procedia CIRP,2016,45:1-6. doi: 10.1016/j.procir.2016.02.052
    [9] KACARAS A, GIBMEIER J, ZANGER F, et al. Influence of rotational speed on surface states after stream finishing [J]. Procedia CIRP,2018,71:221-226. doi: 10.1016/j.procir.2018.05.067
    [10] ITOH S, HO J, TURANGAN C, et al. In situ measurement of granular pressure and velocity on component surfaces in stream finishing[C]//International Conference on Advanced Surface Enhancement. Singapore: Springer, 2019: 226-233.
    [11] 王娜, 杨胜强, 曹波, 等. 主轴式滚磨光整加工参数对加工效果的影响 [J]. 机械设计与制造,2020(5):206-213. doi: 10.3969/j.issn.1001-3997.2020.05.050

    WANG Na, YANG Shengqiang, CAO Bo, et al. Influence of spindle-type roller grinding and finishing parameters on the machining effect [J]. Machine Design and Manufacture,2020(5):206-213. doi: 10.3969/j.issn.1001-3997.2020.05.050
    [12] HASHIMOTO Y, ITO T, NAKAYAMA Y, et al. Fundamental investigation of gyro finishing experimental investigation of contact force between cylindrical workpiece and abrasive media under dry condition [J]. Precision Engineering,2021,67:123-136. doi: 10.1016/j.precisioneng.2020.09.009
    [13] MALKORRA I, SOULI H, CLAUDIN C, et al. Identification of interaction mechanisms during drag finishing by means of an original macroscopic numerical model [J]. International Journal of Machine Tools and Manufacture, 2021, 168(Part A): 1-18.
    [14] CARIAPA V, PARK H, KIM J, et al. Development of a metal removal model using spherical ceramic media in a centrifugal disk mass finishing machine [J]. The International Journal of Advanced Manufacturing Technology,2008,39(1):92-106.
    [15] TAN K L, NEOH E T, LIFTON J J, et al. Internal measurement of media sliding velocity in a stream finishing bowl [J]. The International Journal of Advanced Manufacturing Technology,2022,120(7):4681-4691.
    [16] MALKORRA I, SOULI H, SALVATORE F, et al. Numerical modelling of the drag finishing process at a macroscopic scale to optimize surface roughness improvement on additively manufactured (SLM) Inconel 718 parts [J]. Procedia CIRP, 2022, 108: 648-653.
    [17] 杨胜强, 李文辉, 陈红玲, 等. 表面光整加工理论与新技术[M]. 北京: 国防工业出版社, 2011.

    YANG Shengqiang, LI Wenhui, CHEN Hongling, et al. Theory and new technology of surface finishing [M]. Beijing: National Defense Industry Press, 2011.
    [18] ARCHARD J F. Contact and rubbing of flat surfaces [J]. Journal of Applied Physics,1953,24(8):981-988. doi: 10.1063/1.1721448
    [19] ARCHARD J F. Friction between metal surfaces [J]. Wear,1986,113(1):3-16. doi: 10.1016/0043-1648(86)90052-9
    [20] 桂长林. Archard 的磨损设计计算模型及其应用方法 [J]. 润滑与密封,1990(1):12-21.

    GUI Changlin. Archard's wear design calculation model and its application method [J]. Lubrication and Seals,1990(1):12-21.
    [21] 余将, 杨胜强, 李文辉, 等. 主轴式滚磨光整加工中滚筒转速对滚抛磨块群上界面的影响 [J]. 中国科技论文,2018,13(10):1153-1157. doi: 10.3969/j.issn.2095-2783.2018.10.011

    YU Jiamg, YANG Shengqiang, LI WenHui, et al. Influence of roller speed on the upper interface of roller polishing block group in spindle-type roller polishing process [J]. China Science and Technology Paper,2018,13(10):1153-1157. doi: 10.3969/j.issn.2095-2783.2018.10.011
    [22] HASHIMOTO Y, NAKAYAMA Y, FURUMOTO T, et al. Improving finishing efficiency using a cover plate in gyro finishing [J]. Precision Engineering,2022,74:140-146. doi: 10.1016/j.precisioneng.2021.11.004
    [23] 王程伟, 李秀红, 李文辉, 等. 主轴式滚磨光整加工中介质流场的数值模拟及作用机理分析 [J]. 表面技术,2018,47(11):251-258. doi: 10.16490/j.cnki.issn.1001-3660.2018.11.036

    WANG Chengwei, LI Xiuhong, LI Wenhui, et al. Numerical simulation of media flow field in spindle-type roller grinding and finishing process and analysis of the action mechanism [J]. Surface Technology,2018,47(11):251-258. doi: 10.16490/j.cnki.issn.1001-3660.2018.11.036
    [24] 李盼菲. 电阻应变测量中提高精度的方法研究 [J]. 计量与测试技术,2019,46(12):62-64. doi: 10.15988/j.cnki.1004-6941.2019.12.020

    LI Panfei. Research on methods to improve accuracy in resistance-strain measurement [J]. Measurement and Testing Technology,2019,46(12):62-64. doi: 10.15988/j.cnki.1004-6941.2019.12.020
    [25] 余航, 舒安庆, 丁克勤. 电阻应变片敏感栅栅丝尺寸对测量精度影响的研究 [J]. 中国仪器仪表,2021(4):71-75. doi: 10.3969/j.issn.1005-2852.2021.04.019

    YU Hang, SHU Anqing, DING Keqin. Study on the influence of the size of the sensitive grid wire on the measurement accuracy of resistance strain gauges [J]. China Instrumentation,2021(4):71-75. doi: 10.3969/j.issn.1005-2852.2021.04.019
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  93
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-03
  • 修回日期:  2023-03-08
  • 录用日期:  2023-03-15
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回