CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CBN超硬磨粒工具的超声振动辅助钎焊结合界面微观组织和力学性能

蔡开达 赵彪 吴帮福 丁文锋 徐九华 赵正彩 温学兵 李邵鹏 陈清良

蔡开达, 赵彪, 吴帮福, 丁文锋, 徐九华, 赵正彩, 温学兵, 李邵鹏, 陈清良. CBN超硬磨粒工具的超声振动辅助钎焊结合界面微观组织和力学性能[J]. 金刚石与磨料磨具工程, 2023, 43(5): 568-578. doi: 10.13394/j.cnki.jgszz.2022.0190
引用本文: 蔡开达, 赵彪, 吴帮福, 丁文锋, 徐九华, 赵正彩, 温学兵, 李邵鹏, 陈清良. CBN超硬磨粒工具的超声振动辅助钎焊结合界面微观组织和力学性能[J]. 金刚石与磨料磨具工程, 2023, 43(5): 568-578. doi: 10.13394/j.cnki.jgszz.2022.0190
CAI Kaida, ZHAO Biao, WU Bangfu, DING Wenfeng, XU Jiuhua, ZHAO Zhengcai, WEN Xuebing, LI Shaopeng, CHEN Qingliang. Microstructure and mechanical properties of bonding interface for CBN superabrasive tool using ultrasonic vibration-assisted brazing method[J]. Diamond & Abrasives Engineering, 2023, 43(5): 568-578. doi: 10.13394/j.cnki.jgszz.2022.0190
Citation: CAI Kaida, ZHAO Biao, WU Bangfu, DING Wenfeng, XU Jiuhua, ZHAO Zhengcai, WEN Xuebing, LI Shaopeng, CHEN Qingliang. Microstructure and mechanical properties of bonding interface for CBN superabrasive tool using ultrasonic vibration-assisted brazing method[J]. Diamond & Abrasives Engineering, 2023, 43(5): 568-578. doi: 10.13394/j.cnki.jgszz.2022.0190

CBN超硬磨粒工具的超声振动辅助钎焊结合界面微观组织和力学性能

doi: 10.13394/j.cnki.jgszz.2022.0190
基金项目: 江苏省研究生实践创新计划项目(SJCX21_0106)。
详细信息
    作者简介:

    蔡开达,男,1997年生,硕士研究生。主要研究方向:高效精密加工技术。E-mail:caikaida@nuaa.edu.cn

    通讯作者:

    赵彪,男,1991年生,博士,讲师、硕导。主要研究方向:高效精密加工技术。E-mail:zhaobiao@nuaa.edu.cn

  • 中图分类号: TQ164; TG74; TG58

Microstructure and mechanical properties of bonding interface for CBN superabrasive tool using ultrasonic vibration-assisted brazing method

  • 摘要: 采用高频感应钎焊方法制备钎焊CBN工具存在钎料层厚薄不均匀、连接界面内部易出现气孔等问题,导致钎料对磨粒的把持强度大幅下降、工具使用寿命显著降低。提出用超声振动辅助钎焊的工艺方法制备钎焊CBN工具,借助超声波在钎焊过程中的空化效应和振荡作用减少钎料合金内部的气孔,同时细化晶粒,以大幅提升磨粒的把持强度。结果表明:相比于普通钎焊工艺,采用超声振动辅助钎焊工艺的钎料合金铺展更均匀,区域内部气孔尺寸变小,相同面积上气孔数量减少了75%,单颗CBN磨粒的剪切力提高了27.7%。通过Ti-6Al-4V钛合金磨削对比试验可知:相比普通钎焊工具,超声振动辅助钎焊工具的法向磨削力降低了4.1%~19.6%,切向磨削力降低了8.3%~26.4%,磨削温度降低了5.3%~17.9%。此外,在相同材料去除体积下,超声振动辅助钎焊CBN工具的磨粒大块破碎现象明显减少,大幅提升了工具的耐磨性和使用寿命。

     

  • 图  1  钎焊试验装置

    Figure  1.  Brazing experimental setup

    图  2  钎焊磨粒工具

    Figure  2.  Brazing abrasive tools

    图  3  磨粒剪切试验装置

    Figure  3.  Abrasive shear test device

    图  4  磨削试验装置

    Figure  4.  Grinding experimental setup

    图  5  钎料合金表面形貌

    Figure  5.  Surface morphology of the filler alloy

    图  6  2种CBN磨粒工具不同直径气孔数量和分布情况统计

    Figure  6.  Statistics of number and distribution of pores with different diameters of two CBN abrasive tools

    图  7  钎焊过程中气孔形成示意图

    Figure  7.  Schematic diagram of pores formation during brazing

    图  8  超声振动对钎焊工具影响示意图

    Figure  8.  Schematic diagram of the influence of ultrasonic vibration on brazed tools

    图  9  CBN磨粒工具磨粒剪切曲线和结果

    Figure  9.  Abrasive shear curves and results of two CBN abrasive tools

    图  10  工艺参数对CBN磨粒剪切力的影响

    Figure  10.  Effect of process parameters on shear force of CBN abrasive grains

    图  11  磨削参数对磨粒工具磨削力的影响

    Figure  11.  Effect of grinding parameters on grinding force of abrasive tools

    图  12  磨削参数对磨粒工具磨削温度的影响

    Figure  12.  Effect of grinding parameters on grinding temperature of abrasive tools

    图  13  2种CBN磨粒工具不同出露高度磨粒数量统计

    Figure  13.  Statistics of number of abrasive grains with different exposed height of two CBN abrasive tools

    图  14  2种钎焊磨粒工具地貌示意图

    Figure  14.  Schematic diagram of two kinds of brazing abrasive tools

    图  15  钎焊CBN磨粒工具的磨粒磨损形貌

    Figure  15.  Abrasive wear morphology of brazed CBN abrasive tool

  • [1] XIAO H Z, WANG S Y, XIAO B. Microstructural characteristics and mechanical properties of diamond grinding wheel brazed with modified Ni-Cr-W alloy using continuous tunnel furnace [J]. Ceramics International,2022,48:9258-9268. doi: 10.1016/j.ceramint.2021.12.112
    [2] MUKHOPADHYAY P, GHOSH A. The making and performance of patterned-monolayer brazed diamond wheel produced with Ag-based novel active filler [J]. Journal of Manufacturing Processes,2022,73:220-234. doi: 10.1016/j.jmapro.2021.10.043
    [3] ZHANG L. Filler metals, brazing processing and reliability for diamond tools brazing: A review [J]. Journal of Manufacturing Processes,2021,66:651-668. doi: 10.1016/j.jmapro.2021.04.015
    [4] LI Q L, DING K, LEI W N, et al. Investigation on induction brazing of profiled cBN wheel for grinding of Ti-6Al-4V [J]. Chinese Journal of Aeronautics,2021,34:132-139. doi: 10.1016/j.cja.2020.07.040
    [5] ZHAO B, DING W F, XIAO G D, et al. Self-sharpening property of porous metal-bonded aggregated cBN wheels during the grinding of Ti-6Al-4V alloys [J]. Ceramics International,2022,48:1715-1722. doi: 10.1016/j.ceramint.2021.09.250
    [6] WU S X, ZHANG F L, NI Y Q, et al. Grinding of alumina ceramic with microtextured brazed diamond end grinding wheels [J]. Ceramics International,2020,46:19767-19784. doi: 10.1016/j.ceramint.2020.05.009
    [7] WU Q P, OUYANG Z Y, WANG Y, et al. Precision grinding of engineering ceramic based on the electrolytic dressing of a multi-layer brazed diamond wheel [J]. Diamond and Related Materials,2019,100:107552. doi: 10.1016/j.diamond.2019.107552
    [8] GHOSH A, CHATTOPADHYAY A K. On grain-failure of an indigenously developed single layer brazed CBN wheel [J]. Industrial Diamond Review,2007,1:59-64.
    [9] DING W F, XU J H, CHEN Z Z, et al. Interface characteristics and fracture behavior of brazed polycrystalline CBN grains using Cu-Sn-Ti alloy [J]. Materials Science and Engineering A,2013,559:629-634. doi: 10.1016/j.msea.2012.09.002
    [10] MUKHOPADHYAY P, SIMHAN D R, GHOSH A. Challenges in brazing large synthetic diamond grit by Ni-based filler alloy [J]. Journal of Materials Processing Technology,2017,250:390-400. doi: 10.1016/j.jmatprotec.2017.08.004
    [11] WU K L, YUAN X J, LI T, et al. Effect of ultrasonic vibration on TIG welding-brazing joining of aluminum alloy to steel [J]. Journal of Materials Processing Technology,2019,266:230-238. doi: 10.1016/j.jmatprotec.2018.11.003
    [12] NIE Y, ZHU L, LANG Q, et al. Ultra-rapid and low-temperature soldering of hypereutectic Al-Si alloys by ultrasonic-assisted soldering with In interlayer in air for electronic application [J]. Journal of Advanced Joining Processes,2022,5:100115. doi: 10.1016/j.jajp.2022.100115
    [13] CUI W, LI S Q, YAN J C, et al. Ultrasonic-assisted brazing of sapphire with high strength Al-4.5Cu-1.5Mg alloy [J]. Ceramics International,2015,41:8014-8022. doi: 10.1016/j.ceramint.2015.02.149
    [14] ZHANG C G, JI H J, XU H B, et al. Interfacial microstructure and mechanical properties of ultrasonic-assisted brazing joints between Ti-6Al-4V and ZrO2 [J]. Ceramics International,2020,46:7733-7740. doi: 10.1016/j.ceramint.2019.11.276
    [15] CHEN X G, YAN J C, REN S C, et al. Microstructure, mechanical properties, and bonding mechanism of ultrasonic-assisted brazed joints of SiC ceramics with ZnAlMg filler metals in air [J]. Ceramics International,2014,40:683-689. doi: 10.1016/j.ceramint.2013.06.055
    [16] HUANG G Q, HUANG J R, ZHANG M Q, et al. Fundamental aspects of ultrasonic assisted induction brazing of diamond onto 1045 steel [J]. Journal of Materials Processing Technology,2018,260:123-136. doi: 10.1016/j.jmatprotec.2018.05.021
    [17] 杨沁, 凌景亮, 崔长彩, 等. 高频感应钎焊金刚石磨粒剪切失效的试验研究 [J]. 金刚石与磨料磨具工程,2019,39(5):86-91. doi: 10.13394/j.cnki.jgszz.2019.5.0015

    YANG Qin, LING Jingliang, CUI Changcai, et al. Experimental study on the shearing failure of high frequency induction brazed diamond abrasive [J]. Diamond & Abrasives Engineering,2019,39(5):86-91. doi: 10.13394/j.cnki.jgszz.2019.5.0015
    [18] ZHANG M J, LI K W, HUANG Y B, et al. Impact of ultrasonic vibration on microstructure and mechanical properties of diamond in laser brazing with Ni-Cr filler alloy [J]. Ceramics International,2022,48:4096-4104. doi: 10.1016/j.ceramint.2021.10.200
    [19] 梁宇红. 碳纤维增强树脂基复合材料超声振动辅助磨削的基础研究 [D]. 南京: 南京航空航天大学, 2021.

    LIANG Yuhong. Basic research on ultrasonic vibration assisted grinding of carbon fiber reinforced resin matrix composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021.
    [20] 任敬心, 华定安. 磨削原理 [M]. 北京: 电子工业出版社, 2011.

    REN Jingxin, HUA Dingan. Grinding principle [M]. Beijing: Publishing House of Electronics Industry, 2011.
  • 加载中
图(15)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  117
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 修回日期:  2023-01-04
  • 录用日期:  2023-01-17
  • 网络出版日期:  2023-12-07
  • 刊出日期:  2023-10-20

目录

    /

    返回文章
    返回