CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转磁场磁流体研磨锗片的多物理场耦合数值模拟

刘建河 周洺玉

刘建河, 周洺玉. 旋转磁场磁流体研磨锗片的多物理场耦合数值模拟[J]. 金刚石与磨料磨具工程, 2023, 43(3): 392-400. doi: 10.13394/j.cnki.jgszz.2022.0189
引用本文: 刘建河, 周洺玉. 旋转磁场磁流体研磨锗片的多物理场耦合数值模拟[J]. 金刚石与磨料磨具工程, 2023, 43(3): 392-400. doi: 10.13394/j.cnki.jgszz.2022.0189
LIU Jianhe, ZHOU Mingyu. Numerical simulation of multiphysics coupling for magnetic fluid grinding of germanium wafer by rotating magnetic field[J]. Diamond & Abrasives Engineering, 2023, 43(3): 392-400. doi: 10.13394/j.cnki.jgszz.2022.0189
Citation: LIU Jianhe, ZHOU Mingyu. Numerical simulation of multiphysics coupling for magnetic fluid grinding of germanium wafer by rotating magnetic field[J]. Diamond & Abrasives Engineering, 2023, 43(3): 392-400. doi: 10.13394/j.cnki.jgszz.2022.0189

旋转磁场磁流体研磨锗片的多物理场耦合数值模拟

doi: 10.13394/j.cnki.jgszz.2022.0189
详细信息
    通讯作者:

    刘建河,男,1976年生,副研究员。主要研究方向:精密与超精密加工。E-mail:a_liu100@163.com

  • 中图分类号: TG58;TG356.28

Numerical simulation of multiphysics coupling for magnetic fluid grinding of germanium wafer by rotating magnetic field

  • 摘要:

    为了提高锗片的表面质量,采用旋转磁场磁流体研磨的方法,以数值模拟为研究手段,研究锗片表面在固液两相流作用下的材料去除行为。依据磁流体的研磨原理建立仿真模型,从磁流体研磨的工艺参数出发,结合有限元分析以表面力学特性为切入点,分析不同励磁间隙、磁极转速、颗粒相体积分数等加工参数对锗片表面质量的影响,确定其最佳加工工艺参数,并进行磁流体研磨试验。结果表明:在励磁间隙为5 mm,磁极转速为1 000 r/min,颗粒相体积分数为25%时,经过60 min研磨,锗片的表面质量得到有效改善,其表面粗糙度Ra由500 nm下降到47 nm,实现了锗片表面微小的塑性材料去除。

     

  • 图  1  旋转磁场磁流体研磨原理

    Figure  1.  Principle of magnetic fluid lapping with rotating magnetic field

    图  2  模型图

    Figure  2.  Model figure

    图  3  不同励磁间隙下的磁感应强度分布图

    Figure  3.  Magnetic induction intensity distribution under different excitation gaps

    图  4  不同励磁间隙下的磁感应强度沿x方向位置变化图

    Figure  4.  Position variation diagram of magnetic induction intensity along x direction under different excitation gaps

    图  5  不同时刻颗粒相分布图

    Figure  5.  Particle phase distribution at different times

    图  6  工件最佳位置图

    Figure  6.  Optimal position diagram of workpiece

    图  7  不同转速下的动态压强分布图

    Figure  7.  Dynamic pressure distribution at different rotational speeds

    图  8  不同转速下的剪切应力分布图

    Figure  8.  Shear stress distribution at different rotational speeds

    图  9  磁极转速对动态压强、剪切应力的影响

    Figure  9.  Influence of magnetic pole speed on dynamic pressure and shear stress

    图  10  不同颗粒相体积分数下的动态压强分布图

    Figure  10.  Dynamic pressure distribution under different particle phase volume fractions

    图  11  不同颗粒相体积分数下的剪切应力分布图

    Figure  11.  Shear stress distribution under different particle phase volume fractions

    图  12  颗粒相体积分数对动态压强、剪切应力的影响

    Figure  12.  Influence of particle phase volume fraction on dynamic pressure and shear stress

    图  13  金相显微镜观测加工前后表面形貌

    Figure  13.  Surface morphology observed by metallographic microscope before and after machining

    图  14  扫描电镜观测加工前后表面形貌

    Figure  14.  Surface morphology before and after machining observed by scanning electron microscopy

  • [1] CHEN W S, CHANG B C, CHIU K L. Recovery of germanium from waste optical fibers by hydrometallurgical method [J]. Journal of Environmental Chemical Engineering,2017,5:5215-5221. doi: 10.1016/j.jece.2017.09.048
    [2] ZHAO Y, ZUO D W, SUN Y L, et al. Experimental study on multi-layer ice fixed abrasive polishing of single crystal germanium wafer [J]. The International Journal of Advanced Manufacturing Technology,2016,85:1045-1051. doi: 10.1007/s00170-015-8020-3
    [3] 张亚萍, 席珍强, 张瑞丽, 等. 锗单晶材料的生长与应用 [J]. 材料导报,2009,23(1):14-16, 20.

    ZHANG Yaping, XI Zhenqiang, ZHANG Ruili, et al. Growth and application of germanium single crystal materials [J]. Material Reports,2009,23(1):14-16, 20.
    [4] 叶荣昌, 刘书进, 高宏, 等. 磁流体制备技术的研究现状及其存在问题 [J]. 机械工程材料,2003(3):33-34, 50. doi: 10.3969/j.issn.1000-3738.2003.03.011

    YE Rongchang, LIU Shujin, GAO Hong, et al. Research status and existing problems of magnetic fluid preparation technology [J]. Mechanical Engineering Materials,2003(3):33-34, 50. doi: 10.3969/j.issn.1000-3738.2003.03.011
    [5] DONALD G, STEVEN D J, KORDONSKY W. Fabrication of glass aspheres using deterministic microgrinding and magnetorheological finishing [J]. Optical Manufacturing and Testing, 1995, 2536: 208-211.
    [6] WILLIAM K, DONALD G. Progress update in magnetorheological finishing [J]. International Journal of Modern Physics B,1999,13:2205-2212. doi: 10.1142/S0217979299002320
    [7] 李蓓智, 王安伟, 杨建国, 等. 磁流变抛光磁路的结构设计及有限元仿真 [J]. 机械研究与应用,2008,21(2):92-95. doi: 10.3969/j.issn.1007-4414.2008.02.038

    LI Beizhi, WANG Anwei, YANG Jianguo, et al. Structure design and finite element simulation of magnetic circuit for magnetorheological polishing [J]. Mechanical Research and Application,2008,21(2):92-95. doi: 10.3969/j.issn.1007-4414.2008.02.038
    [8] 石峰, 戴帆, 彭小强, 等. 磁流变抛光消除磨削亚表面损伤层新工艺 [J]. 光学精密工程,2010,18(1):162-168.

    SHI Feng, DAI Fan, PENG Xiaoqiang, et al. A new technique of magnetorheological polishing to eliminate subsurface damaged layer in grinding [J]. Optical precision engineering,2010,18(1):162-168.
    [9] 褚聪, 戴勇, 沈明, 等. 基于Fluent的强约束磨粒射流抛光特性 [J]. 表面技术,2016,45(6):198-204.

    CHU Cong, DAI Yong, SHEN Ming, et al. Characteristics of abrasive jet polishing with strong constraint based on Fluent [J]. Surface Technology,2016,45(6):198-204.
    [10] 陈宏安, 梁威. 基于COMSOL的液滴驱动模型仿真分析及实验研究 [J]. 软件工程,2022,25(8):34-38. doi: 10.19644/j.cnki.issn2096-1472.2022.008.008

    CHEN Hong′an, LIANG Wei. Droplet drive model simulation and experimental research based on COMSOL [J]. Software Engineering,2022,25(8):34-38. doi: 10.19644/j.cnki.issn2096-1472.2022.008.008
    [11] 王强. 基于旋转磁场的磁流变光整加工技术研究 [D]. 武汉: 华中科技大学, 2020.

    WANG Qiang. Research on Magnetorheological finishing technology based on rotating magnetic field [D]. Wuhan: Huazhong University of Science and Technology, 2020.
    [12] 冯洋. 磁场作用下磁性粒子的团聚行为模拟及实验研究 [D]. 武汉: 华中科技大学, 2016.

    FENG Yang. Simulation and experimental study on agglomeration behavior of magnetic particles under magnetic field [D]. Wuhan: Huazhong University of Science and Technology, 2016.
    [13] ROSENSWEIG R E. Ferrohydrodynamics [M]. Cambridge: Cambridge University Press, 1985.
  • 加载中
图(14)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  158
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-05
  • 修回日期:  2022-12-26
  • 录用日期:  2023-01-13
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回