CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PW-CFRP弹性性能预测及三维钻削仿真

周强 陈燕 王晓宇 张川川 陈雪梅 刘元吉 陈清良 勾江洋

周强, 陈燕, 王晓宇, 张川川, 陈雪梅, 刘元吉, 陈清良, 勾江洋. PW-CFRP弹性性能预测及三维钻削仿真[J]. 金刚石与磨料磨具工程, 2023, 43(5): 592-603. doi: 10.13394/j.cnki.jgszz.2022.0177
引用本文: 周强, 陈燕, 王晓宇, 张川川, 陈雪梅, 刘元吉, 陈清良, 勾江洋. PW-CFRP弹性性能预测及三维钻削仿真[J]. 金刚石与磨料磨具工程, 2023, 43(5): 592-603. doi: 10.13394/j.cnki.jgszz.2022.0177
ZHOU Qiang, CHEN Yan, WANG Xiaoyu, ZHANG Chuanchuan, CHEN Xuemei, LIU Yuanji, CHEN Qingliang, GOU Jiangyang. Elastic performance prediction and 3D drilling simulation of PW-CFRP[J]. Diamond & Abrasives Engineering, 2023, 43(5): 592-603. doi: 10.13394/j.cnki.jgszz.2022.0177
Citation: ZHOU Qiang, CHEN Yan, WANG Xiaoyu, ZHANG Chuanchuan, CHEN Xuemei, LIU Yuanji, CHEN Qingliang, GOU Jiangyang. Elastic performance prediction and 3D drilling simulation of PW-CFRP[J]. Diamond & Abrasives Engineering, 2023, 43(5): 592-603. doi: 10.13394/j.cnki.jgszz.2022.0177

PW-CFRP弹性性能预测及三维钻削仿真

doi: 10.13394/j.cnki.jgszz.2022.0177
基金项目: 国家自然科学基金(51875284)。
详细信息
    通讯作者:

    陈燕,女,1969年生,教授、博士生导师。主要研究方向:难加工材料的高效精密加工技术。E-mail: ninaych@nuaa.edu.cn

  • 中图分类号: TB58; TB332

Elastic performance prediction and 3D drilling simulation of PW-CFRP

  • 摘要: 平纹编织结构碳纤维增强树脂基复合材料(plain-woven carbon fiber-reinforced plastic,PW-CFRP)展现出高损伤容限特性,在航空航天领域应用广泛。针对PW-CFRP钻削仿真中由于其材料弹性性能变化导致单一尺度钻削仿真难以体现实际钻削力的问题,研究其弹性性能预测及多尺度三维钻削仿真。基于周期性边界条件的弹性性能参数预测模型,利用预测的材料弹性性能参数,采用多尺度有限元方法,仿真PW-CFRP的三维钻削并开展试验验证。研究结果表明:基于周期边界条件的有限元法能准确预测编织复合材料的弹性常数;在剪切载荷下,其编织单胞的边界面均由平面变成曲面,发生凸凹翘曲变形;基于刚度预测模型基础的PW-CFRP三维钻削仿真模型能够准确预测制孔过程中的轴向力、扭矩;在相同工艺参数下,制孔轴向力和扭矩的仿真预测与试验结果相对误差分别为14.2%和8.5%。

     

  • 图  1  PW-CFRP多尺度结构组成示意图

    Figure  1.  PW-CFRP multi-scale structure composition diagram

    图  2  线性不相关的单一工况下模型受载示意图

    Figure  2.  Load diagram of model under linear uncorrelated single condition

    图  3  纤维束横截面内纤维排布情况

    Figure  3.  Fiber arrangement at section of bundles

    图  4  细观尺度纤维单胞有限元模型

    Figure  4.  Mesoscale fiber unit cell finite element model

    图  5  PW-CFRP截面实物图与结构示意图

    Figure  5.  PW-CFRP section physical drawing and structure diagram

    图  6  介观尺度编织单胞模型及纤维束材料主方向

    Figure  6.  Mesoscale braided unit cell model and main direction of fiber bundle material

    图  7  PW-CFRP多尺度分析模型

    Figure  7.  PW-CFRP multi-scale analysis model

    图  8  PW-CFRP三维钻削有限元模型

    Figure  8.  PW-CFRP 3D drilling finite element model

    图  9  钻削试验工装

    Figure  9.  Drilling experiment equipment

    图  10  纤维单胞的变形和Mises应力云图

    Figure  10.  Deformation and Mises stress nephogram of fiber unit cell

    图  11  编织单胞的变形和Mises应力云图

    Figure  11.  Deformation and Mises stress nephogram of braided unit cell

    图  12  PW-CFRP钻削仿真与试验结果对比

    Figure  12.  PW-CFRP drilling simulation and experiment results comparison

    图  13  PW-CFRP有限元仿真的钻削过程

    Figure  13.  Drilling process of PW-CFRP finite element simulation

    图  14  PW-CFRP钻削轴向力仿真与试验结果对比

    Figure  14.  Comparison of drilling force simulation and experimental results of PW-CFRP

    图  15  PW-CFRP钻削扭矩仿真与试验结果对比

    Figure  15.  Comparison of drilling torque simulation and experimental results of PW-CFRP

    表  1  单胞模型所需施加的线性不相关的宏观应力场

    Table  1.   Linearly uncorrelated macroscopic stress fields to be applied to single cell model

    序号 $ \stackrel{-}{{\sigma }_{x}} $ $ \stackrel{-}{{\sigma }_{y}} $ $ \stackrel{-}{{\sigma }_{{\textit{z}}}} $ $ \stackrel{-}{{\tau }_{x}} $ $ \stackrel{-}{{\tau }_{y}} $ $ \stackrel{-}{{\tau }_{{\textit{z}}}} $
    1 $ \stackrel{-}{{\sigma }_{x}} $ 0 0 0 0 0
    2 0 $ \stackrel{-}{{\sigma }_{y}} $ 0 0 0 0
    3 0 0 $\stackrel{-}{ {\sigma }_{{\textit{z}}} }$ 0 0 0
    4 0 0 0 $ \stackrel{-}{{\tau }_{x}} $ 0 0
    5 0 0 0 0 $ \stackrel{-}{{\tau }_{y}} $ 0
    6 0 0 0 0 0 $\stackrel{-}{ {\tau }_{ {{\textit{z}} } } }$
    下载: 导出CSV

    表  2  纤维单胞模型的几何结构参数

    Table  2.   Geometric parameters of fiber unit cell model

    序号 S/ μm b/ μm Df / μm Vf
    1 8.268 7.161 7 65%
    下载: 导出CSV

    表  3  纤维和树脂材料的弹性性能参数[20]

    Table  3.   Elastic property parameters of fiber and resin materials[20]

    物理量 物理量
    纤维 基体 纤维 基体
    E11 / GPa 213.0 3.5 μ23 0.30 0.30
    E22 / GPa 14.0 3.5 G12 / GPa 9.0 1.1
    E33 / GPa 14.0 3.5 G13 / GPa 9.0 1.1
    μ12 0.26 0.30 G23 / GPa 4.8 1.1
    μ13 0.26 0.30
    下载: 导出CSV

    表  4  编织单胞模型的几何结构参数

    Table  4.   Geometric parameters of woven unit cell model

    序号 A0 / mm H0 / mm Vf h0 / mm
    1 1.8 0.15 55% 0.05
    下载: 导出CSV

    表  5  碳纤维织物层强度属性[21]

    Table  5.   Strength properties of carbon fiber fabric layer

    PW-CFRP强度参数 数值
    X1t=X2t / MPa 2720
    X3t / MPa 111
    X1c=X2c / MPa 1690
    X3t / MPa 214
    S12=S13=S23 / MPa 115
    下载: 导出CSV

    表  6  钻削刀具主要结构尺寸参数

    Table  6.   Main structure parameters of drilling tool

    刀具主要参数 数值
    直径 r / mm 4.851
    顶角 α /(°) 90
    螺旋角 θ /(°) 30
    刀长 l / mm 75
    下载: 导出CSV

    表  7  纤维束等效弹性参数

    Table  7.   Equivalent elastic parameters of fiber bundle

    物理量 数值 物理量 数值
    E11 / GPa 137.5 μ23 0.40
    E22 / GPa 8.2 G12 / GPa 5.7
    E33 / GPa 8.2 G13 / GPa 5.7
    μ12 0.29 G23 / GPa 2.8
    μ23 0.29
    下载: 导出CSV

    表  8  织物层等效弹性参数

    Table  8.   Equivalent elastic parameters of fabric layer

    物理量 数值 物理量 数值
    E11 / GPa 49.0 μ23 0.297
    E22/ GPa 49.0 G12/ GPa 11.0
    E33/ GPa 18.3 G13 / GPa 6.4
    μ12 0.110 G23 / GPa 6.6
    μ23 0.280
    下载: 导出CSV
  • [1] ZHU C, ZHU P, LIU Z. Uncertainty analysis of mechanical properties of plain woven carbon fiber reinforced composite via stochastic constitutive modeling [J]. Composite Structures,2019,207:684-700. doi: 10.1016/j.compstruct.2018.09.089
    [2] 王新峰, 周光明, 周储伟, 等. 基于周期性边界条件的机织复合材料多尺度分析 [J]. 南京航空航天大学学报,2005(6):730-735. doi: 10.3969/j.issn.1005-2615.2005.06.012

    WANG Xinfeng, ZHOU Guangming, ZHOU Chuwei, et al. Multi-scale analyses of woven composite based on periodical boundary condition [J]. Journal of Nanjing University of Aeronautics & Astronautics,2005(6):730-735. doi: 10.3969/j.issn.1005-2615.2005.06.012
    [3] KARKKAINEN R L, SANKAR B V. A direct micromechanics method for analysis of failure initiation of plain weave textile composites [J]. Composites Science and Technology,2006,66(1):137-150. doi: 10.1016/j.compscitech.2005.05.018
    [4] GOYAL D, TANG X, WHITCOMB J D. Effect of various parameters on effective engineering properties of 2×2 braided composites [J]. Mechanics of Advanced Materials and Structures,2005,12(2):113-128. doi: 10.1080/15376490490493998
    [5] 张超, 许希武. 二维二轴编织复合材料几何模型及弹性性能预测 [J]. 复合材料学报,2010,27(5):129-135. doi: 10.13801/j.cnki.fhclxb.2010.05.019

    ZHANG Chao, XU Xiwu. Geometrical model and elastic properties prediction of 2D biaxial braided composites [J]. Acta Material Compositae Sinica,2010,27(5):129-135. doi: 10.13801/j.cnki.fhclxb.2010.05.019
    [6] PEI X, CHEN L, GAO Y, et al. Effect of reinforcement structures on vibration performance of composites [J]. Journal of Composite Materials,2017,51(22):3149-3161. doi: 10.1177/0021998316689602
    [7] WHITCOMB J, SRIRENGAN K. Effect of various approximations on predicted progressive failure in plain weave composites [J]. Composite structures,1996,34(1):13-20. doi: 10.1016/0263-8223(95)00125-5
    [8] COLBY C S, KIM H J. Multi-scale cell analyses of textile composites: "Proceedings of the 15th ASCE Engineering Mechanics Conference" [C/OL]. New York: [s.n.], 2002[2022-12-26]. http://user.engineering.uiowa.edu/~swan/presentations/asce_textiles.pdf
    [9] 翟军军. 基于多尺度理论的三维编织复合材料力学性能研究 [D]. 哈尔滨: 哈尔滨理工大学, 2018.

    ZHAI Junjun. Investigation of mechanical properties of 3D braided composites based on multi-scale theory [D]. Harbin: Harbin University of Science and Technology, 2018.
    [10] DENG Y, CHEN X, WANG H, et al. A multi-scale correlating model for the mechanical properties of tri-axial braided composites [J]. Journal of Reinforced Plastics & Composites,2013,32(24):1934-1955. doi: 10.1177/0731684413496337
    [11] ROUF K, DENTON N L, FRENCH R M. Effect of fabric weaves on the dynamic response of two-dimensional woven fabric composites [J]. Journal of Materials Science,2017,52(17):10581-10591. doi: 10.1007/s10853-017-1183-6
    [12] PERSSON E, ERIKSSON I, ZACKRISSON L. Effects of hole machining defects on strength and fatigue life of composite laminates [J]. Composites Part A: Applied Science and Manufacturing,1997,28(2):141-151. doi: 10.1016/S1359-835X(96)00106-6
    [13] ISBILIR O, GHASSEMIEH E. Three-dimensional numerical modelling of drilling of carbon fiber-reinforced plastic composites [J]. Journal of Composite Materials,2014,48(10):1209-1219. doi: 10.1177/0021998313484947
    [14] FEITO N, DÍAZ-ÁLVAREZ J, LÓPEZ-PUENTE J, et al. Experimental and numerical analysis of step drill bit performance when drilling woven CFRPs [J]. Composite Structures,2018,184:1147-1155. doi: 10.1016/j.compstruct.2017.10.061
    [15] FEITO N, DIAZ-ALVAREZ A, CANTERO J L, et al. Experimental analysis of special tool geometries when drilling woven and multidirectional CFRPs [J]. Journal of Reinforced Plastics and Composites,2016,35(1):33-55. doi: 10.1177/0731684415612931
    [16] 张向阳. 平纹编织复合材料钻削损伤机理及表征方法研究 [D]. 西安: 西安理工大学, 2021.

    ZHANG Xiangyang. Study on drilling damage mechanism and characterization method of plain weave composites [D]. Xi`an: Xi`an University of Technology, 2021.
    [17] XIA Z, ZHANG Y, ELLYIN F. A unified periodical boundary conditions for representative volume elements of composites and applications [J]. International Journal of Solids and Structures,2003,40(8):1907-1921. doi: 10.1016/S0020-7683(03)00024-6
    [18] 邵兵. 大丝束碳纤维平纹编织复合材料孔边应力细观分析 [D]. 南昌: 南昌大学, 2018.

    SHAO Bing. The micromechanical analysis of stress near central hole in big carbon tow plain-woven composite [D]. Nanchang: Nanchang University, 2018.
    [19] 张宪丰. 平纹编织陶瓷基复合材料孔边应力多尺度分析 [D]. 南昌: 南昌大学, 2021.

    ZHANG Xianfeng. Multi-scale analysis of hole edge stress in plain weave ceramic matrix composites [D]. Nanchang: Nanchang University, 2021.
    [20] 陈继刚, 薛亚红, 闫世程. 二维机织复合材料弹性常数的有限元法预测 [J]. 复合材料学报,2016,33(8):1702-1709. doi: 10.13801/j.cnki.fhclxb.20151106.003

    CHEN Jigang, XUE Yahong, YAN Shicheng. Finite element prediction of elastic constants for 2D woven fabric composite [J]. Acta Material Compositae Sinica,2016,33(8):1702-1709. doi: 10.13801/j.cnki.fhclxb.20151106.003
    [21] 张勋, 陈燕, 徐九华, 等. 大厚径碳纤维复合材料三维钻削有限元仿真及试验研究 [J]. 金刚石与磨料磨具工程,2020,40(2):53-60. doi: 10.13394/j.cnki.jgszz.2020.2.0010

    ZHANG Xun, CHEN Yan, XU Jiuhua, et al. Finite element simulation of and experimental study on three - dimensional drilling of large diameter carbon fiber composites [J]. Diamond & Abrasives Engineering,2020,40(2):53-60. doi: 10.13394/j.cnki.jgszz.2020.2.0010
    [22] 徐陈林. 基于ABAQUS的CFRP/TC4叠层结构钻削技术研究 [D]. 南京: 南京航空航天大学, 2016.

    XU Chenlin. Research on drilling technology of CFRP/Ti6Al4V stacks based on ABAOUS [D]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2016
  • 加载中
图(15) / 表(8)
计量
  • 文章访问数:  283
  • HTML全文浏览量:  121
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 修回日期:  2023-02-03
  • 录用日期:  2023-02-13
  • 网络出版日期:  2023-12-07
  • 刊出日期:  2023-10-20

目录

    /

    返回文章
    返回