CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镍基单晶高温合金DD5磨削成屑机理研究

于贵华 朱涛 蔡明 安志欣 王成静 罗书宝

于贵华, 朱涛, 蔡明, 安志欣, 王成静, 罗书宝. 镍基单晶高温合金DD5磨削成屑机理研究[J]. 金刚石与磨料磨具工程, 2023, 43(6): 760-771. doi: 10.13394/j.cnki.jgszz.2022.0169
引用本文: 于贵华, 朱涛, 蔡明, 安志欣, 王成静, 罗书宝. 镍基单晶高温合金DD5磨削成屑机理研究[J]. 金刚石与磨料磨具工程, 2023, 43(6): 760-771. doi: 10.13394/j.cnki.jgszz.2022.0169
YU Guihua, ZHU Tao, CAI Ming, AN Zhixin, WANG Chengjing, LUO Shubao. Study on chip formation in grinding nickel-based single-crystal superalloy DD5[J]. Diamond & Abrasives Engineering, 2023, 43(6): 760-771. doi: 10.13394/j.cnki.jgszz.2022.0169
Citation: YU Guihua, ZHU Tao, CAI Ming, AN Zhixin, WANG Chengjing, LUO Shubao. Study on chip formation in grinding nickel-based single-crystal superalloy DD5[J]. Diamond & Abrasives Engineering, 2023, 43(6): 760-771. doi: 10.13394/j.cnki.jgszz.2022.0169

镍基单晶高温合金DD5磨削成屑机理研究

doi: 10.13394/j.cnki.jgszz.2022.0169
基金项目: 国家自然科学基金(U1908230,51775100); 辽宁省自然科学基金(2023-BS-185);辽宁省教育厅科学技术研究项目(LJKZ0384);辽宁石油化工大学引进人才科研启动基金(2021XJJL-007);国家级大学生创新创业训练计划项目(202210148002)。
详细信息
    通讯作者:

    蔡明,男,1990年生,博士、副教授、硕士研究生导师。主要研究方向为磨削与精密加工技术、绿色加工。E-mail: caiming199004@126.com

  • 中图分类号: TG58; TH161

Study on chip formation in grinding nickel-based single-crystal superalloy DD5

  • 摘要: 为研究镍基单晶高温合金DD5的磨削去除机理,提高其加工效率,针对镍基单晶高温合金具有显著各向异性的特点,建立基于Hill模型的三维有限元磨削模型,研究镍基单晶高温合金DD5的表面加工形貌和切屑形貌,分析切屑形貌演变过程及其磨削力变化,探究磨削速度对切屑形貌和切屑形成频率的影响。研究表明:在磨削参数范围内,加工DD5容易出现锯齿形切屑;磨削力呈稳定增加并伴有一定的周期性波动,其波动情况与锯齿形切屑相对应;随着磨削速度的增大,磨粒能更快进入切削阶段,其临界成屑厚度由0.225 μm最终降为0.158 μm,成屑阶段占比由85.0%提高到89.5%;临界划擦厚度受磨削速度变化影响不大;随着磨削速度的增加,DD5切屑形貌由锯齿分节密集堆叠的单元节状向连续型锯齿状转变,最后发展为条形带状切屑。

     

  • 图  1  镍基单晶高温合金DD5及其微观组织

    Figure  1.  Nickel-based single crystal superalloy DD5 and its microstructure

    图  2  研究方案

    Figure  2.  Research program

    图  3  工件模型的建立[18]

    Figure  3.  Establishment of workpiece model[18]

    图  4  单颗磨粒磨削有限元仿真模型

    Figure  4.  Finite element simulation model of single abrasive

    图  5  DD5在760 ℃下的应力应变曲线[23]

    Figure  5.  Stress-strain curves of DD5 at 760 ℃[23]

    图  6  DD5磨削后表面形貌和切屑形态

    Figure  6.  Surface topology of DD5 after grinding and its chip shape

    图  7  DD5锯齿形切屑的形成过程

    (a) 1.080 μm; (b) 1.095 μm; (c) 1.125 μm; (d) 1.140 μm; (e) 1.155 μm; (f) 1.178 μm.

    Figure  7.  Serrated chip formation of DD5

    图  8  DD5在不同单颗磨粒切削深度下的切屑形貌图

    (a) 0.038 μm; (b) 0.188 μm; (c) 0.300 μm; (d) 0.600 μm; (e) 1.050 μm; (f) 1.275 μm

    Figure  8.  Chip morphology of DD5 at different single abrasive cutting depths

    图  9  DD5在不同磨削速度下磨削三阶段的转变情况

    Figure  9.  Three-stage transition of DD5 grinding at different grinding speeds

    图  10  DD5在不同单颗磨粒磨削速度下的应变率分布

    Figure  10.  Strain rate distribution of DD5 at different grinding speeds of single abrasive

    图  11  锯齿形切屑形成过程中一个周期内的法向磨削力变化

    Figure  11.  Change of normal grinding force in one cycle during the formation of serrated chips

    图  12  单颗磨粒磨削DD5在不同磨削速度下的法向磨削力变化

    Figure  12.  Change of normal grinding force of DD5 grinding with single abrasive at different grinding speeds

    图  13  DD5磨削过程中的磨削力变化

    Figure  13.  Grinding force changes during grinding of DD5

    图  14  磨削速度对切屑形貌的影响

    (a) 15 m/s; (b) 25 m/s; (c) 35 m/s; (d) 45 m/s; (e) 60 m/s; (f) 100m/s

    Figure  14.  Effect of grinding speed on chip morphology

    图  15  DD5磨削试验过程中磨削速度对切屑形貌的影响

    (a) 整体切屑形貌 Over all morphology of chips (b) 15 m/s; (c) 25 m/s; (d) 35 m/s.

    Figure  15.  Effect of grinding speed on chip morphology during DD5 grinding experiment

    表  1  DD5主要物理性能

    Table  1.   Main physical properties of DD5

    序号硬度
    H
    屈服强度
    σs
    弹性模量
    E
    泊松比
    ν
    熔点
    Tm
    收缩比
    S
    DD5550 HV1109 MPa134.7 GPa0.4191368 °C13.5%
    下载: 导出CSV

    表  2  单颗磨粒的具体磨削参数

    Table  2.   Grinding parameters of single abrasive

    类型取值
    磨削速度 vs / (m·s−1)15, 25, 35, 45, 60, 80, 100
    最大未变形切削厚度 agmax / µm1.5
    下载: 导出CSV
  • [1] POLLOCK T M. Alloy design for aircraft engines [J]. Nature Materials,2016,15(8):809. doi: 10.1038/nmat4709
    [2] ZHANG Z, YANG Z, LU S, et al. Strain localization and failure at twin-boundary complexions in nickel-based superalloys [J]. Nature Communication,2020,11:4890. doi: 10.1038/s41467-020-18641-z
    [3] SINGH R, SHARMA V. Machining induced surface integrity behavior of nickel-based superalloy: Effect of lubricating environments [J]. Journal of Materials Processing Technology,2022,307:117701. doi: 10.1016/j.jmatprotec.2022.117701
    [4] ZHU T, CAI M, GONG Y, et al. Study on chip formation in grinding of nickel-based polycrystalline superalloy GH4169 [J]. The International Journal of Advanced Manufacturing Technology,2022,121:1135-1148. doi: 10.1007/s00170-022-09386-8
    [5] QU S, YAO P, GONG Y, et al. Environmentally friendly grinding of C/SiCs using carbon nanofluid minimum quantity lubrication technology [J]. Journal of Cleaner Production,2022,36:132898. doi: 10.1016/j.jclepro.2022.132898
    [6] CAI M, GONG Y, SUN Y, et al. Experimental study on grinding surface properties of nickel-based single crystal superalloy DD5 [J]. The International Journal of Advanced Manufacturing Technology,2019,101:71-85. doi: 10.1007/s00170-018-2839-3
    [7] ZHOU Y, GONG Y, CAI M, et al. Study on surface quality and subsurface recrystallization of nickel-based single-crystal superalloy in micro-grinding [J]. The International Journal of Advanced Manufacturing Technology,2017,90:1749-1768. doi: 10.1007/s00170-016-9401-y
    [8] ZHAO Z, QIAN N, DING W, et al. Profile grinding of DZ125 nickel-based superalloy: Grinding heat, temperature field, and surface quality [J]. Journal of Manufacturing Processes,2020,57:10-22. doi: 10.1016/j.jmapro.2020.06.022
    [9] CAI M, ZHU T, GAO X, et al. Study on machining performance in grinding of Ni-base single crystal superalloy DD5 [J]. The International Journal of Advanced Manufacturing Technology,2022,120:7657-7671. doi: 10.1007/s00170-022-09256-3
    [10] LIANG Z, WANG X, WU Y, et al. Experimental study on brittle–ductile transition in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire using single diamond abrasive grain [J]. International Journal of Machine Tools & Manufacture,2013,71:41-51. doi: 10.4028/www.scientific.net/AMR.797.223
    [11] ZHU Y, ZHANG Q, ZHAO Q, et al. The material removal and the nanometric surface characteristics formation mechanism of TiC/Ni cermet in ultra-precision grinding [J]. International Journal of Refractory Metals and Hard Materials,2021,96:105494. doi: 10.1016/j.ijrmhm.2021.105494
    [12] LI C, ZHANG F, WANG X, et al. Repeated nanoscratch and double nanoscratch tests of Lu2O3 transparent ceramics: Material removal and deformation mechanism, and theoretical model of penetration depth [J]. Journal of the European Ceramic Society,2018,38(2):705-718. doi: 10.1016/j.jeurceramsoc.2017.09.028
    [13] DAI J, DING W, ZHANG L, et al. Understanding the effects of grinding speed and undeformed chip thickness on the chip formation in high-speed grinding [J]. The International Journal of Advanced Manufacturing Technology,2015,81:995-1005. doi: 10.1007/s00170-015-7265-1
    [14] 巩亚东, 周俊, 周云光, 等. 镍基单晶高温合金微尺度磨削温度仿真 [J]. 东北大学学报(自然科学版),2018,39(1):82-86. doi: 10.12068/j.issn.1005-3026.2018.01.017

    GONG Yadong, ZHOU Jun, ZHOU Yunguang, et al. Micro-grinding temperature simulation for nickel-based single crystal superalloy [J]. Journal of Northeastern University (Natural Science),2018,39(1):82-86. doi: 10.12068/j.issn.1005-3026.2018.01.017
    [15] ESMAEILI H, ADIBI H, REZAEI S M. Study on surface integrity and material removal mechanism in eco-friendly grinding of Inconel 718 using numerical and experimental investigations [J]. The International Journal of Advanced Manufacturing Technology,2021,112:1797-1818. doi: 10.1007/s00170-020-06528-8
    [16] MIAO Q, DING W, KUANG W, et al. Grinding force and surface quality in creep feed profile grinding of turbine blade root of nickel-based superalloy with microcrystalline alumina abrasive wheels [J]. Chinese Journal of Aeronautics,2021,34(2):576-585. doi: 10.1016/j.cja.2019.11.006
    [17] KUANG W, MIAO Q, DING W, et al. Fretting wear behaviour of machined layer of nickel-based superalloy produced by creep-feed profile grinding [J]. Chinese Journal of Aeronautics,2022,35(10):401-411. doi: 10.1016/j.cja.2021.10.007
    [18] 丁文锋, 苗情, 李本凯, 等. 面向航空发动机的镍基合金磨削技术研究进展 [J]. 机械工程学报,2019,55(1):189-215. doi: 10.3901/JME.2019.01.189

    DING Wenfeng, MIAO Qing, LI Benkai, et al. Review on grinding technology of nickel-based superalloys used for aero-engine [J]. Journal of Mechanical Engineering,2019,55(1):189-215. doi: 10.3901/JME.2019.01.189
    [19] 夏江, 丁文锋, 徐九华, 等. 镍基高温合金高速超高速磨削成屑过程的三维仿真研究 [J]. 金刚石与磨料磨具工程,2020,40(6):58-69. doi: 10.13394/j.cnki.jgszz.2020.6.0011

    XIA Jiang, DING Wenfeng, XU Jiuhua, et al. 3D simulation study on the chip formation process in high speed and ultra-high speed grinding of nickel-based superalloy [J]. Diamond & Abrasives Engineering,2020,40(6):58-69. doi: 10.13394/j.cnki.jgszz.2020.6.0011
    [20] 丁智平, 刘义伦, 尹泽勇, 等. 镍基单晶高温合金的屈服准则研究 [J]. 机械强度,2004,26(2):175-179. doi: 10.3321/j.issn:1001-9669.2004.02.011

    DING Zhiping, LIU Yilun, YIN Zeyong, et al. Study of yield criterion for single crystal nickel-based superalloys [J]. Journal of Mechanical Strength,2004,26(2):175-179. doi: 10.3321/j.issn:1001-9669.2004.02.011
    [21] 丁智平, 刘义伦, 尹泽勇, 等. 面心立方晶体单晶材料弹塑性本构模型 [J]. 中南大学学报(自然科学版),2004,35(3):423-428.

    DING Zhiping, LIU Yilun, YIN Zeyong, et al. Constitutive model for FCC single crystal material [J]. Journal of Central South University (Science and Technology),2004,35(3):423-428.
    [22] 冯露, 张克实, 张光, 等. HILL屈服准则与晶体塑性模型对FCC单晶材料塑性各向异性描述能力的比较 [J]. 计算力学学报,2003,20(5):535-540 + 573. doi: 10.3969/j.issn.1007-4708.2003.05.005

    FENG Lu, ZHANG Keshi, ZHANG Guang, et al. Comparative study of Hill model with crystal plasticity for FCC single crystals [J]. Chinese Journal of Computational Mechanics,2003,20(5):535-540 + 573. doi: 10.3969/j.issn.1007-4708.2003.05.005
    [23] 秦健朝, 崔仁杰, 黄朝晖. 小角度晶界对DD5镍基单晶高温合金中、高温条件下力学性能的影响 [J]. 材料工程,2020,48(10):114-122. doi: 10.11868/j.issn.1001-4381.2020.000002

    QIN Jianchao, CUI Renjie, HUANG Chaohui. Effect of low angle grain boundaries on mechanical properties of DD5 single crystal Ni-base superalloy at medium temperature and high temperature [J]. Journal of Materials Engineering,2020,48(10):114-122. doi: 10.11868/j.issn.1001-4381.2020.000002
    [24] 田霖, 傅玉灿, 杨路, 等. 基于速度效应的高温合金高速超高速磨削成屑过程及磨削力研究 [J]. 机械工程学报,2013,49(9):169-177. doi: 10.3901/JME.2013.09.169

    TIAN Lin, FU Yucan, YANG Lu, et al. Investigations of the “speed effect” on critical thickness of chip formation and grinding force in high speed and ultra-high speed grinding of superalloy [J]. Journal of Mechanical Engineering,2013,49(9):169-177. doi: 10.3901/JME.2013.09.169
    [25] 孙永杰, 朱涛, 蔡明, 等. 镍基单晶高温合金磨削润滑方式对表面完整性的影响 [J]. 金刚石与磨料磨具工程,2022,42(2):201-207. doi: 10.13394/j.cnki.jgszz.2021.0114

    SUN Yongjie, ZHU Tao, CAI Ming, et al. Influence of grinding lubrication methods on surface integrity of nickel-based single crystal superalloy [J]. Diamond & Abrasives Engineering,2022,42(2):201-207. doi: 10.13394/j.cnki.jgszz.2021.0114
    [26] 赵恒华, 牟红平, 赵学洋. 介观与宏观角度下的磨削力修正研究 [J]. 辽宁石油化工大学学报,2016,36(5):47-50. doi: 10.3969/j.issn.1672-6952.2016.05.011

    ZHAO Henghua, MU Hongping, ZHAO Xueyang. Modification of the grinding force in mesoscopic and macroscopic [J]. Journal of Liaoning Shihua University,2016,36(5):47-50. doi: 10.3969/j.issn.1672-6952.2016.05.011
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  93
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2023-01-16
  • 录用日期:  2023-02-10
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回