CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双平面研磨Si3N4圆柱滚子的表面质量

黄贺利 李颂华 吴玉厚 孙健 王鹏飞 赵梓辰

黄贺利, 李颂华, 吴玉厚, 孙健, 王鹏飞, 赵梓辰. 双平面研磨Si3N4圆柱滚子的表面质量[J]. 金刚石与磨料磨具工程, 2023, 43(3): 371-378. doi: 10.13394/j.cnki.jgszz.2022.0165
引用本文: 黄贺利, 李颂华, 吴玉厚, 孙健, 王鹏飞, 赵梓辰. 双平面研磨Si3N4圆柱滚子的表面质量[J]. 金刚石与磨料磨具工程, 2023, 43(3): 371-378. doi: 10.13394/j.cnki.jgszz.2022.0165
HUANG Heli, LI Songhua, WU Yuhou, SUN Jian, WANG Pengfei, ZHAO Zichen. Surface quality of double-sided grinding Si3N4 cylindrical rollers[J]. Diamond & Abrasives Engineering, 2023, 43(3): 371-378. doi: 10.13394/j.cnki.jgszz.2022.0165
Citation: HUANG Heli, LI Songhua, WU Yuhou, SUN Jian, WANG Pengfei, ZHAO Zichen. Surface quality of double-sided grinding Si3N4 cylindrical rollers[J]. Diamond & Abrasives Engineering, 2023, 43(3): 371-378. doi: 10.13394/j.cnki.jgszz.2022.0165

双平面研磨Si3N4圆柱滚子的表面质量

doi: 10.13394/j.cnki.jgszz.2022.0165
基金项目: 国家自然科学基金(51975388);国防科技创新特区计划(20-163-00-TS-006-002-11);辽宁省教育厅高等学校基本科研项目(LJKZ0597);辽宁省自然科学基金(2020-BS-159);辽宁“百千万工程人才工程”培养经费资助项目(辽人社涵(2021)79号)。
详细信息
    作者简介:

    李颂华,男,1977年生,教授、博士。主要研究方向:难加工材料高效精密加工工艺与装备、高性能数控机床主轴系统等。E-mail:rick_li2000@163.com

  • 中图分类号: TG58; TQ164

Surface quality of double-sided grinding Si3N4 cylindrical rollers

  • 摘要:

    为获得双平面研磨Si3N4圆柱滚子的最佳工艺参数组合,采用正交试验法,探究研磨盘转速、研磨压力和磨粒基本颗粒尺寸对其表面质量和去除效率的影响规律,并以工件的表面粗糙度和材料去除效率作为研磨最佳工艺参数的优选依据。结果表明:随着研磨盘转速和研磨压力的增大,工件表面粗糙度先减小后增大;且磨粒基本颗粒尺寸和工件表面粗糙度、研磨盘转速和研磨压力和去除效率均呈正相关。Si3N4圆柱滚子研磨的最佳工艺参数组合是金刚石磨粒基本颗粒尺寸为2.6 μm、研磨盘转速为20 r/min、研磨压力为0.15 MPa;在此最优参数下,可获得表面粗糙度为0.0486 μm、材料去除效率为1.20 μm/min的光滑无损伤Si3N4圆柱滚子。

     

  • 图  1  游离磨料研磨加工材料去除模型

    Figure  1.  Material removal model of free abrasive grinding

    图  2  工件表面的微观形貌

    Figure  2.  Microtopography of the workpiece surface

    图  3  双面研磨机结构及原理图

    Figure  3.  Structure and schematic diagram of double-side grinder

    图  4  粗磨后的Si3N4陶瓷滚子工件

    Figure  4.  Si3N4 ceramic roller workpiece after rough grinding

    图  5  Si3N4圆柱滚子工件位置

    Figure  5.  Si3N4 cylindrical roller workpiece positions

    图  6  研磨盘转速对Ra 及材料去除效率的影响

    Figure  6.  Effects of rotating speed of lapping disc on Ra and material removal efficiency

    图  7  金刚石磨粒基本颗粒尺寸对Ra及去除效率的影响

    Figure  7.  Effects of basic particle sizes of diamond abrasive grain on Ra and removal efficiency

    图  8  不同基本颗粒尺寸磨粒研磨后的Si3N4工件表面形貌

    Figure  8.  Si3N4 workpiece surface morphologies ground with abrasive particles of different basic particle sizes

    图  9  研磨压力对Ra及材料去除效率的影响

    Figure  9.  Effects of grinding pressures on Ra and material removal efficiency

    图  10  光滑无损伤的Si3N4圆柱滚子

    Figure  10.  Smooth and undamaged Si3N4 cylindrical rollers

    图  11  试验前后Ra对比

    Figure  11.  Ra comparison before and after grinding

    表  1  Si3N4陶瓷材料性能参数

    Table  1.   Si3N4 material performance parameters

    性能指标数值
    密度 ρ / (g∙cm−3)3.26
    弹性模量 E / GPa310
    硬度 H / GPa16
    泊松比 ε0.25
    断裂韧性 KIC / (MPa∙m−2)7.0
    压碎载荷比 R40
    线膨胀系数 λ / K−13.2 × 10−6
    下载: 导出CSV

    表  2  试验因素及水平

    Table  2.   Experimental factors and levels

    水平因素
    研磨盘转速
    n / (r∙min−1)
    A
    金刚石磨粒基本颗粒尺寸
    D50 / μm
    B
    研磨压力
    p / MPa
    C
    11415.00.05
    217 6.50.10
    320 2.60.15
    423 1.30.20
    下载: 导出CSV

    表  3  正交试验结果

    Table  3.   Orthogonal experimental results

    组号ABC表面粗糙度
    Ra / μm
    去除效率
    η / (μm∙min−1)
    1 14 15.0 0.05 0.0758 0.46
    2 14 6.5 0.10 0.0683 0.83
    3 14 2.6 0.15 0.0409 1.00
    4 14 1.3 0.20 0.0410 1.01
    5 17 15.0 0.10 0.0699 0.99
    6 17 6.5 0.15 0.0658 0.99
    7 17 2.6 0.20 0.0444 1.07
    8 17 1.3 0.05 0.0310 0.54
    9 20 15.0 0.15 0.0633 1.04
    10 20 6.5 0.20 0.0531 1.34
    11 20 2.6 0.05 0.0394 0.75
    12 20 1.3 0.10 0.0321 1.01
    13 23 15.0 0.20 0.0885 1.51
    14 23 6.5 0.05 0.0755 0.94
    15 23 2.6 0.10 0.0699 1.07
    16 23 1.3 0.15 0.0273 1.48
    下载: 导出CSV

    表  4  Ra响应表

    Table  4.   Ra response table

    水平ABC
    10.05650.04380.0739
    20.05270.04860.0600
    30.04700.06570.0493
    40.06530.07430.0567
    极差0.01830.03060.0246
    下载: 导出CSV

    表  5  材料去除效率响应表

    Table  5.   Material removal efficiency response table

    水平ABC
    10.831.010.67
    20.900.970.98
    31.031.031.13
    41.251.001.23
    极差0.420.060.56
    下载: 导出CSV
  • [1] 赵礼辉, 李其宸, 冯金芝, 等. 随机道路载荷下轮毂轴承服役寿命预测方法研究 [J]. 机械工程学报,2021,57(10):77-86. doi: 10.3901/JME.2021.10.077

    ZHAO Lihui, LI Qichen, FENG Jinzhi, et al. Research on prediction method of hub-bearing service life under random road load [J]. Journal of Mechanical Engineering,2021,57(10):77-86. doi: 10.3901/JME.2021.10.077
    [2] 何加群. 论我国重大技术装备轴承的自主安全可控 [J]. 轴承,2022(1):1-17.

    HE Jiaqun. Discussion on independence safety and controllability of bearings for major technical equipment in china [J]. Bearing,2022(1):1-17.
    [3] 曾献智, 奚强, 刘璇, 等. 有轨电车轮对轴承失效原因的分析及优化改进 [J]. 轴承,2020(11):34-39.

    ZENG Xianzhi, XI Qiang, LIU Xuan, et al. Failure reason analysis and optimized improvement on wheel bearings for tramcar [J]. Bearing,2020(11):34-39.
    [4] 李颂华, 王维东, 吴玉厚, 等. 金刚石油石超精加工氧化锆陶瓷轴承沟道的仿真与实验研究 [J]. 金刚石与磨料磨具工程,2018,38(4):64-71.

    LI Songhua, WANG Weidong, WU Yuhou, et al. Simulation and experimental study on diamond stick superfinishing bearing raceway made of zirconic ceramic [J]. Diamond & Abrasives Engineering,2018,38(4):64-71.
    [5] 吴玉厚, 王维东, 李颂华, 等. 干湿磨条件下氧化锆陶瓷表面粗糙度实验 [J]. 沈阳建筑大学学报(自然科学版),2017,33(6):1080-1087.

    WU Yuhou, WANG Weidong, LI Songhua, et al. Experiments of surface roughness of zirconia ceramics under wet and dry grinding [J]. Journal of Shenyang Jianzhu University ( Natural Science),2017,33(6):1080-1087.
    [6] OBRIEN M J, PRESSER N, ROBINSON E Y. Failure analysis of three Si3N4 balls used in hybrid bearings [J]. Engineering Failure Analysis,2003,10(4):453-473. doi: 10.1016/S1350-6307(03)00011-6
    [7] 于琦, 张永乾, 杨泽琨, 等. 高性能氧化硅陶瓷滚子的研制 [J]. 轴承,2019,476(7):40-42, 66.

    YU Qi, ZHANG Yongqian, YANG Zekun, et al. Development of high performance Si3N4 ceramic rollers [J]. Bearing,2019,476(7):40-42, 66.
    [8] 李鸿亮, 张占立, 李建华, 等. 氮化硅陶瓷滚子轴承的高速性能试验 [J]. 轴承,2015(8):33-35, 40.

    LI Hongliang, ZHANG Zhanli, LI Jianhua, et al. High speed performance test for silicon nitride ceramic roller bearings [J]. Bearing,2015(8):33-35, 40.
    [9] 李文博, 张占立, 姚强, 等. 陶瓷滚子超声振动辅助磨削装置设计与试验 [J]. 机械设计与研究,2019,35(4):178-181.

    LI Wenbo, ZHANG Zhanli, YAO Qiang, et al. Design and test of ceramic roller ultrasonic vibration assisted grinding device [J]. Machine Design and Research,2019,35(4):178-181.
    [10] 张占立, 孙涛, 王恒迪, 等. 氮化硅陶瓷滚子的油基磁流变抛光液研究 [J]. 金刚石与磨料磨具工程,2014,34(6):60-63.

    ZHANG Zhanli, SUN Tao, WANG Hengdi, et al. Study on the oil-based magnetorheological fluid applied for Si3N4 ceramic rollers polishing [J]. Diamond & Abrasives Engineering,2014,34(6):60-63.
    [11] 孙涛. 氮化硅陶瓷滚子的化学机械复合抛光技术研究 [D]. 洛阳: 河南科技大学, 2015.

    SUN Tao. The study of the chemical-mechanical compound polishing technology for Si3N4 ceramic roller [D]. Luoyang: Henan University of Science and Technology, 2015.
    [12] 张占立, 熊明照, 王恒迪, 等. 氮化硅陶瓷滚子磁流变、化学与超声复合抛光工艺试验 [J]. 轴承,2016(2):14-19.

    ZHANG Zhanli, XIONG Mingzhao, WANG Hengdi, et al. Polishing processing test for silicon nitride ceramic rollers based on magnetorheological and chemo-ultrasonic compound technology [J]. Bearing,2016(2):14-19.
    [13] 张占立, 张运瑞, 叶秀玲, 等. 氮化硅陶瓷滚子磁流变与超声波复合抛光技术 [J]. 河南科技大学学报(自然科学版) , 2014, 35(4): 13-17.

    ZHANG Zhanli, ZHANG Yunrui, YE Xiuling, et al. Magnetorheological-ultrasonic technology for polishing Si3N4 ceramic roller [J]. Journal of Henan University of Science & Technology (Natural Science), 2014, 35(4): 13-17.
    [14] UMEHARA N, KALPAKJIAN S. Magnetic fluid grinding: A new technique for finishing advanced ceramics [J]. CIRP Annals,1994,43(1):185-188. doi: 10.1016/S0007-8506(07)62192-1
    [15] 杨蕾, 任成祖. 圆柱滚子电磁推进装置仿真与推进实验分析 [J]. 工程设计学报,2019,26(5):611-618.

    YANG Lei, REN Chengzu. Simulation and propulsion experimental analysis of electromagnetic propulsion device for cylindrical roller [J]. Chinese Journal of Engineering Design,2019,26(5):611-618.
    [16] 姚蔚峰, 袁巨龙, 江亮, 等. 偏心运动双平面超精研抛圆柱面研究 [J]. 中国机械工程,2018,29(19):2327-2334. doi: 10.3969/j.issn.1004-132X.2018.19.009

    YAO Weifeng, YUAN Julong, JIANG Liang, et al. Study on both-side cylindrical ultra-precision lapping and polishing processes in eccentric rotations [J]. China MechanIcal Engineering,2018,29(19):2327-2334. doi: 10.3969/j.issn.1004-132X.2018.19.009
    [17] 王志强, 方伟, 豁国燕, 等. LED蓝宝石衬底研磨工艺研究 [J]. 金刚石与磨料磨具工程,2015,35(2):59-62.

    WANG Zhiqiang, FANG Wei, HUO Guoyan, et al. Research on lapping technology of LED sapphire substrate [J]. Diamond & Abrasives Engineering,2015,35(2):59-62.
    [18] 李颂华, 严传振, 孙健. 双面研磨Si3N4圆柱滚子表面质量研究 [J]. 兵器材料科学与工程, 2021, 44(5): 23-28.

    LI Songhua, YAN Chuanzhen, SUN Jian. Study on surface quality of double-sided grinding Si3N4 cylindrical rollers [J]. Ordnance Material Science and Engineering, 2021, 44(5): 23-28.
    [19] 卢守相, 杨秀轩, 张建秋, 等. 关于硬脆材料去除机理与加工损伤的理性思考 [J]. 机械工程学报,2022,58(15):31-45.

    LU Shouxiang, YANG Xiuxuan, ZHANG Jianqiu, et al. Rational discussion on material removal mechanisms and machining damage of hard and brittle materials [J]. Journal of Mechanical Engineering,2022,58(15):31-45.
    [20] DING K, LI Q, ZHANG C. Experimental studies on material removal mechanisms in ultrasonic assisted grinding of SiC ceramics with a defined grain distribution brazed grinding wheel [J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(11/12): 3663-3676.
    [21] CHENG X, WEI X T, YANG X H, et al. Unified criterion for brittle–ductile transition in mechanical microcutting of brittle materials [J]. Journal of Manufacturing Science and Engineering, 2014, 136: 5-12.
    [22] 吴书安, 祝锡晶, 王建青, 等. 单磨粒对硬脆性材料延性去除的建模分析 [J]. 表面技术,2016,45(5):219-223. doi: 10.16490/j.cnki.issn.1001-3660.2016.05.034

    WU Shu′an, ZHU Xijing, WANG Jianqing, et al. Modelling analysis on ductile removal of hard-brittle material by single grain [J]. Surface Technology,2016,45(5):219-223. doi: 10.16490/j.cnki.issn.1001-3660.2016.05.034
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  116
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-29
  • 修回日期:  2022-11-18
  • 录用日期:  2023-12-05
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回