CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小模数齿轮的缓进深切成形磨削实验

易军 李治宏 周炜

易军, 李治宏, 周炜. 小模数齿轮的缓进深切成形磨削实验[J]. 金刚石与磨料磨具工程, 2023, 43(3): 332-339. doi: 10.13394/j.cnki.jgszz.2022.0163
引用本文: 易军, 李治宏, 周炜. 小模数齿轮的缓进深切成形磨削实验[J]. 金刚石与磨料磨具工程, 2023, 43(3): 332-339. doi: 10.13394/j.cnki.jgszz.2022.0163
YI Jun, LI Zhihong, ZHOU Wei. Experimental research on creep feed deep profile grinding of small-module gears[J]. Diamond & Abrasives Engineering, 2023, 43(3): 332-339. doi: 10.13394/j.cnki.jgszz.2022.0163
Citation: YI Jun, LI Zhihong, ZHOU Wei. Experimental research on creep feed deep profile grinding of small-module gears[J]. Diamond & Abrasives Engineering, 2023, 43(3): 332-339. doi: 10.13394/j.cnki.jgszz.2022.0163

小模数齿轮的缓进深切成形磨削实验

doi: 10.13394/j.cnki.jgszz.2022.0163
基金项目: 国家自然科学基金(51905168); 湖南省自然科学基金(2020JJ5192)。
详细信息
    作者简介:

    易军,男,1987年生,副教授。主要研究方向:精密超精密加工。E-mail:yj_hnust@163.com

  • 中图分类号: TG58; TG74; TQ164

Experimental research on creep feed deep profile grinding of small-module gears

  • 摘要: 针对高精度齿轮加工工艺路线长的问题,提出小模数齿轮缓进深切成形磨削方法并开展磨削实验,分析不同进给速度对磨削功率、工件磨削烧伤、砂轮磨损等的影响规律,且采用复刻法研究砂轮的磨损过程。结果表明:磨削功率峰值随进给速度的增加而增大;当进给速度超过150 mm/min时,工件表面发生磨削烧伤,其磨削表面的硬度明显高于工件初始表面的硬度,且工件表层发生了马氏体相变;距离磨削表面的深度增加,其硬度值均呈下降趋势,且齿底位置的硬化层深度小于齿廓两侧的硬化层深度;砂轮的磨损过程分为初期磨损、稳定磨损和快速磨损阶段3个阶段,其中稳定磨损阶段的材料去除体积约为2 000 mm3,过大的进给速度将引起砂轮的严重磨损。

     

  • 图  1  磨削实验装置

    Figure  1.  Grinding experimental device

    图  2  砂轮修整过程

    Figure  2.  Grinding wheel dressing process

    图  3  砂轮复印示意图

    Figure  3.  Diagram of grinding wheel copying

    图  4  砂轮轮廓获取流程图

    Figure  4.  Flow chart of grinding wheel contour acquisition

    图  5  磨削功率信号

    Figure  5.  Signals of grinding power

    图  6  磨削功率峰值随进给速度的变化

    Figure  6.  Variation of grinding power peaks with feed speed

    图  7  进给速度对磨削表面硬度的影响

    Figure  7.  Effect of feed speeds on surface hardness

    图  8  硬度沿深度的分布

    Figure  8.  Distribution of hardness along depth

    图  9  工件的初始显微组织

    Figure  9.  Initial microstructure of workpiece

    图  10  磨削加工后放大的齿槽横截面形貌

    Figure  10.  Cross-sectional morphology of the tooth groove with magnification after grinding

    图  11  磨削加工后放大的右侧齿廓边缘横截面形貌

    Figure  11.  Cross-sectional morphology of the right tooth profile edge with magnification after grinding

    图  12  图像处理

    Figure  12.  Image processing

    图  13  磨削前后砂轮的轮廓对比

    Figure  13.  Profile comparison of grinding wheel before and after grinding

    图  14  砂轮累积磨损体积与工件材料去除体积之间的关系

    Figure  14.  Relation between accumulated wear volume of grinding wheel and material removal volume of workpiece

    图  15  砂轮的磨损形式

    Figure  15.  Wear form of grinding wheel

    表  1  磨削工艺参数

    Table  1.   Grinding process parameters

    实验
    组号
    砂轮线速度
    vs / (m·s−1)
    磨削深度
    ap / mm
    进给速度
    vw /(mm·min−1
    磨削次数n1
    1602.45610,20,40,60,
    80,100,200
    7
    2106
    3606
    4806
    590,100,110,120,
    130,150,180
    7
    61106
    71206
    下载: 导出CSV
  • [1] 康玉辉, 李美美. 逆向工程技术在小模数齿轮加工检测中的应用 [J]. 机电工程,2020,37(11):1372-1375. doi: 10.3969/j.issn.1001-4551.2020.11.020

    KANG Yuhui, LI Meimei. Application of reverse engineering technology in machining and measuring of small module gear [J]. Journal of Mechanical & Electrical Engineering,2020,37(11):1372-1375. doi: 10.3969/j.issn.1001-4551.2020.11.020
    [2] 徐敏, 冯育敏, 杜改梅, 等. 小模数硬齿面齿轮磨削烧伤分析与预防 [J]. 机械传动,2014,38(7):127-130. doi: 10.16578/j.issn.1004.2539.2014.07.005

    XU Min, FENG Yumin, DU Gaimei, et al. Analysis and prevention grinding burn of small modulus hardened gear [J]. Journal of Mechanical Transmission,2014,38(7):127-130. doi: 10.16578/j.issn.1004.2539.2014.07.005
    [3] HOOD R, LECHNER F, ASPINWALLl D K, et al. Creep feed grinding of gamma titanium aluminide and burn resistant titanium alloys using SiC abrasive [J]. International Journal of Machine Tools and Manufacture,2007,47(9):1486-1492. doi: 10.1016/j.ijmachtools.2006.10.008
    [4] JIN T, STEPHENSON D J. Investigation of the heat partitioning in high efficiency deep grinding [J]. International Journal of Machine Tools and Manufacture,2003,43(11):1129-1134. doi: 10.1016/S0890-6955(03)00123-8
    [5] 冯克明, 赵金坠. 先进磨削技术应用现状与展望 [J]. 轴承,2020(4):60-67. doi: 10.19533/j.issn1000-3762.2020.04.014

    FENG Keming, ZHAO Jinzhui. Present situation and prospect of advanced grinding technology application [J]. Bearing,2020(4):60-67. doi: 10.19533/j.issn1000-3762.2020.04.014
    [6] DANG J, ZANG H, AN Q, et al. Feasibility study of creep feed grinding of 300M steel with zirconium corundum wheel [J]. Chinese Journal of Aeronautics,2022,35(3):565-578. doi: 10.1016/j.cja.2021.01.029
    [7] 丁文锋, 曹洋, 赵彪, 等. 超声振动辅助磨削加工技术及装备研究的现状与展望 [J]. 机械工程学报,2022,58(9):244-269.

    DING Wenfeng, CAO Yang, ZHAO Biao, et al. Research status and future prospects of ultrasonic vibration-assisted grinding technology and equipment [J]. Journal of Mechanical Engineering,2022,58(9):244-269.
    [8] 毕雪峰, 杨承三, 景璐璐. 深切缓进给磨削烧伤实验研究 [J]. 上海理工大学学报,2014,36(3):303-306. doi: 10.13255/j.cnki.jusst.2014.03.018

    BI Xuefeng, YANG Chengsan, JING Lulu. Experimental research on grinding burn in creep feed grinding [J]. Journal of University of Shanghai for Science and Technology,2014,36(3):303-306. doi: 10.13255/j.cnki.jusst.2014.03.018
    [9] 刘爽, 李敏, 丁文锋, 等. 刚玉砂轮缓进深切磨削K444镍基高温合金研究 [J]. 金刚石与磨料磨具工程,2021,41(4):72-81. doi: 10.13394/j.cnki.jgszz.2021.4.0011

    LIU Shuang, LI Min, DING Wenfeng, et al. Study on creep-feed deep grinding of K444 nickel-based superalloy with corundum grinding wheel [J]. Diamond & Abrasives Engineering,2021,41(4):72-81. doi: 10.13394/j.cnki.jgszz.2021.4.0011
    [10] 梁国星, 李光, 韩阳, 等. 窄深槽缓进给干式磨削的试验研究 [J]. 太原理工大学学报,2017,48(5):778-782. doi: 10.16355/j.cnki.issn1007-9432tyut.2017.05.013

    LIANG Guoxing, LI Guang, HAN Yang, et al. Study on the creep feed dry grinding process of narrow deep groove [J]. Journal of Taiyuan University of Technology,2017,48(5):778-782. doi: 10.16355/j.cnki.issn1007-9432tyut.2017.05.013
    [11] 张昊, 梁国星, 马志飞, 等. AISI1045钢窄深槽磨削表面完整性试验研究 [J]. 机械设计与制造,2021(7):117-120. doi: 10.3969/j.issn.1001-3997.2021.07.028

    ZHANG Hao, LIANG Guoxing, MA Zhifei, et al. Experimental study on surface integrity for grinding narrow deep groove of AISI 1045 Steel [J]. Machinery Design & Manufacture,2021(7):117-120. doi: 10.3969/j.issn.1001-3997.2021.07.028
    [12] 李征, 丁文锋, 徐九华, 等. 颗粒增强钛基复材缓进深切磨削加工研究 [J]. 航空制造技术,2017(Z1):48-54. doi: 10.16080/j.issn1671-833x.2017.1/2.048

    LI Zheng, DING Wenfeng, XU Jiuhua, et al. Research on creep-feed deep grinding of particle-reinforced titanium matrix composites [J]. Aeronautical Manufacturing Technology,2017(Z1):48-54. doi: 10.16080/j.issn1671-833x.2017.1/2.048
    [13] MIAO Q, DING W, GU Y, et al. Comparative investigation on wear behavior of brown alumina and microcrystalline alumina abrasive wheels during creep feed grinding of different nickel-based superalloys [J]. Wear,2019,426/427:1624-1634. doi: 10.1016/j.wear.2019.01.080
    [14] 顾玉栊. 刚玉砂轮缓进深切磨削加工镍基单晶合金叶片榫头研究 [D]. 南京: 南京航空航天大学, 2019.

    GU Yulong. Creep-feed deep grinding of nickel-based single-crystal superalloy blade tenon with corundum abrasive wheels [D]. Nanjing: Nanjing University of Aeronautics And Astronautics, 2019.
    [15] YI J, JIN T, ZHOU W, et al. Theoretical and experimental analysis of temperature distribution during full tooth groove form grinding [J]. Journal of Manufacturing Processes,2020,58:101-115. doi: 10.1016/j.jmapro.2020.08.011
    [16] 陈明. 难加工材料成形磨削烧伤研究 [J]. 上海: 上海交通大学学报,1997,31(9):56-60.

    CHEN Ming. Study on profile grinding burn in the process of grinding difficult to machine materials [J]. Journal of Shanghai Jiaotong University,1997,31(9):56-60.
    [17] ZHAO Z, QIAN N, DING W, et al. Profile grinding of DZ125 nickel-based superalloy: Grinding heat, temperature field, and surface quality [J]. Journal of Manufacturing Processes,2020,57:10-22. doi: 10.1016/j.jmapro.2020.06.022
    [18] 易军, 金滩, 张明东. 基于磨削功率测量和巴克豪森无损检测的齿轮成形磨削烧伤研究 [J]. 机械传动,2019,43(9):109-112, 132. doi: 10.16578/j.issn.1004.2539.2019.09.018

    YI Jun, JIN Tan, ZHANG Mingdong. Research of gear form grinding burn based on grinding power measurement and barkhausen nondestructive test [J]. Journal of Mechanical Transmission,2019,43(9):109-112, 132. doi: 10.16578/j.issn.1004.2539.2019.09.018
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  309
  • HTML全文浏览量:  138
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-26
  • 修回日期:  2022-11-07
  • 录用日期:  2022-11-07
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回