CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声发射的磨削表面粗糙度模型及实验验证

尹国强 丰艳春 韩华超 李东旭 李超

尹国强, 丰艳春, 韩华超, 李东旭, 李超. 基于声发射的磨削表面粗糙度模型及实验验证[J]. 金刚石与磨料磨具工程, 2023, 43(5): 640-648. doi: 10.13394/j.cnki.jgszz.2022.0160
引用本文: 尹国强, 丰艳春, 韩华超, 李东旭, 李超. 基于声发射的磨削表面粗糙度模型及实验验证[J]. 金刚石与磨料磨具工程, 2023, 43(5): 640-648. doi: 10.13394/j.cnki.jgszz.2022.0160
YIN Guoqiang, FENG Yanchun, HAN Huachao, LI Dongxu, LI Chao. Model and experimental verification of grinding surface roughness based on acoustic emission[J]. Diamond & Abrasives Engineering, 2023, 43(5): 640-648. doi: 10.13394/j.cnki.jgszz.2022.0160
Citation: YIN Guoqiang, FENG Yanchun, HAN Huachao, LI Dongxu, LI Chao. Model and experimental verification of grinding surface roughness based on acoustic emission[J]. Diamond & Abrasives Engineering, 2023, 43(5): 640-648. doi: 10.13394/j.cnki.jgszz.2022.0160

基于声发射的磨削表面粗糙度模型及实验验证

doi: 10.13394/j.cnki.jgszz.2022.0160
基金项目: 国家自然科学基金(52005092);教育部中央高校基本科研业务费项目(N2203015)。
详细信息
    通讯作者:

    尹国强,男,1983年生,博士、副教授、硕士生导师。主要研究方向:复合材料磨削与精密加工、磨削状态在线监测、硬脆材料划切加工。E-mail: yinguoqiang@me.neu.edu.cn

  • 中图分类号: TG58

Model and experimental verification of grinding surface roughness based on acoustic emission

  • 摘要: 为实现对磨削过程中表面粗糙度的预测,在磨削过程中增加声发射装置,采用AE信号监测磨削状态,分析AE信号特征参量和频谱随磨削深度ap、砂轮速度vs和进给速度vw等磨削参数变化的规律。结果表明:随着apvw的增大,AE信号特征参量的有效值和振铃计数值都增大,AE信号的主要能量集中频谱在90~140 kHz,对应的频谱幅值呈逐渐增大趋势;而随着vs逐渐增大,AE信号特征参量的有效值逐渐减小,振铃计数值逐渐增大,频段对应的频谱幅值呈逐渐减小的趋势。对数据进一步分析,得出AE信号特征参量与加工表面粗糙度的对应关系,为表面粗糙度预测模型建立提供样本。利用基于BP神经网络的多信息融合算法对AE信号的多种特征参量信息进行合理融合,建立基于AE信号的磨削加工表面粗糙度多信息融合预测模型,该模型可在实际生产中预测磨削表面粗糙度。

     

  • 图  1  磨削实验系统

    Figure  1.  Grinding test system

    图  2  2M9120型工具磨床

    Figure  2.  2M9120 tool grinding machine

    图  3  磨削深度对AE信号频谱的影响

    Figure  3.  Influences of grinding depths on AE signal spectrum

    图  4  砂轮线速度对AE信号频谱的影响

    Figure  4.  Influences of grinding wheel linear speeds on AE signal spectrum

    图  5  进给速度对AE信号频谱的影响

    Figure  5.  Influences of feed speeds on AE signal spectrum

    图  6  磨削深度对AE信号有效值的影响

    Figure  6.  Influences of grinding depths on effective values of AE signal

    图  7  磨削深度对AE信号振铃计数值的影响

    Figure  7.  Influences of grinding depths on ringing count values of AE signal

    图  8  砂轮线速度对AE信号有效值的影响

    Figure  8.  Influences of grinding wheel linear speeds on effective values of AE signal

    图  9  砂轮线速度对AE信号振铃计数值的影响

    Figure  9.  Influences of grinding wheel linear speeds on ringing count values of AE signal

    图  10  进给速度对AE信号有效值的影响

    Figure  10.  Influences of feed speeds on effective values of AE signal

    图  11  进给速度对AE信号振铃计数值的影响

    Figure  11.  Influences of feed speeds on ringing count values of AE signal

    图  12  表面粗糙度与AE信号特征参数之间的关系

    Figure  12.  The relationship between surface roughness and characteristic parameters of AE signal

    图  13  BP神经网络的拓扑结构

    Figure  13.  Topological structure of BP neural network

    图  14  预测值与实验值对比图

    Figure  14.  Comparison diagram of predicted value and experimental value

    图  15  预测值与实验值的回归分析图

    Figure  15.  Regression analysis chart between predicted and experimental values

    图  16  样本预测值与实验值间的相对误差

    Figure  16.  Relative error between sample predicted and experimental values

    表  1  单因素实验参数

    Table  1.   Single factor experimental parameters

    编号 磨削深度
    ap / μm
    砂轮线速度
    vs / (m·s−1)
    工件进给速度
    vw / (m·min−1)
    1 10,20,30,40,50 25 0.75
    2 30 15,20,25,30,35 0.75
    3 30 25 0.45,0.60,0.75,0.90,1.05
    下载: 导出CSV

    表  2  表面粗糙度预测模型的测试样本数据

    Table  2.   Test sample data of surface roughness prediction model

    样本号 ap
    / μm
    vs
    / (m·s−1)
    vw
    / (m·min−1)
    有效值 VRMS / V 振铃
    计数值 n1 / 次
    FFT峰值 AF / dB 实验值 Ra1 / μm 预测值 Ra2 / μm
    1 20 25 0.75 7.765 471 68.329 0.788 0.831
    2 20 25 0.75 9.212 496 94.135 0.845 0.884
    3 20 25 0.75 8.499 483 81.574 0.811 0.858
    4 30 25 0.75 9.145 514 115.232 0.883 0.949
    5 30 25 0.75 9.838 525 127.084 0.912 0.971
    6 30 25 0.75 8.458 504 100.918 0.868 0.926
    7 40 25 0.75 9.862 540 147.075 0.956 0.986
    8 40 25 0.75 9.183 528 135.207 0.934 0.967
    9 40 25 0.75 10.605 554 161.422 0.978 1.009
    10 50 25 0.75 13.821 570 206.153 1.144 1.116
    11 50 25 0.75 12.394 544 180.042 1.082 1.068
    12 50 25 0.75 13.157 558 193.296 1.118 1.092
    13 30 20 0.75 10.802 481 145.916 1.044 1.076
    14 30 20 0.75 11.477 495 160.353 1.071 1.101
    15 30 20 0.75 12.212 506 172.231 1.098 1.124
    16 30 30 0.75 9.231 563 104.284 0.857 0.905
    17 30 30 0.75 8.572 550 91.832 0.836 0.885
    18 30 30 0.75 7.878 539 78.545 0.812 0.864
    19 30 35 0.75 7.027 595 61.518 0.775 0.807
    20 30 35 0.75 7.709 609 74.732 0.792 0.827
    21 30 35 0.75 6.292 583 48.757 0.757 0.785
    22 30 25 0.6 8.591 495 96.334 0.811 0.851
    23 30 25 0.6 7.917 485 82.196 0.787 0.823
    24 30 25 0.6 9.352 506 110.598 0.832 0.881
    25 30 25 0.9 11.043 543 135.637 1.031 1.068
    26 30 25 0.9 12.408 570 159.955 1.081 1.103
    27 30 25 0.9 11.711 558 148.391 1.057 1.086
    28 30 25 1.05 14.037 557 172.682 1.174 1.198
    29 30 25 1.05 14.786 570 184.636 1.192 1.214
    30 30 25 1.05 15.501 584 197.579 1.216 1.229
    下载: 导出CSV
  • [1] ZHENG X H, LIU Z Q, GUO G Q, et al. Experimental research of grinding TC4 titanium alloy using green silicon carbide wheel [J]. Key Engineering Materials,2011,487:121-125. doi: 10.4028/www.scientific.net/KEM.487.121
    [2] HUANG S T, YU X L. A study of grinding forces of SiCp/Al composites [J]. The International Journal of Advanced Manufacturing Technology,2018,94(9/10/11/12):3633-3639. doi: 10.1007/s00170-017-1115-2
    [3] PAN Y, WANG Y, ZHOU P, et al. Activation functions selection for BP neural network model of ground surface roughness [J]. Journal of Intelligent Manufacturing,2020,31:1825-1836. doi: 10.1007/s10845-020-01538-5
    [4] 陈明, 朱明武. 声发射在磨削难加工材料中的应用 [J]. 南京理工大学学报,1995(3):193-197. doi: 10.14177/j.cnki.32-1397n.1995.03.001

    CHEM Ming, ZHU Mingwu. Application of acoustic emission signal in grinding difficult-to-machine materials [J]. Journal of Nanjing University of Science and Technology,1995(3):193-197. doi: 10.14177/j.cnki.32-1397n.1995.03.001
    [5] 刘贵杰, 巩亚东, 王宛山. 声发射技术在磨削加工监测中的应用 [J]. 机械工程师,2001(12):4-6.

    LIU Guijie, GONG Yadong, WANG Wanshan. Applications of acoustic emission technology in monitoring of grinding processes [J]. Mechanical Engineer,2001(12):4-6.
    [6] DING N, ZHAO C L, LUO X C, et al. An intelligent prediction of surface roughness on precision grinding [J]. Solid State Phenomena, 2017, 261: 221-225.
    [7] ARUN A, RAMESHKUMER K, UNNIKRISHNAN D, et al. Tool condition monitoring of cylindrical grinding process using acoustic emission sensor [J]. Materials Today: Proceedings,2018,5(5):11888-11899. doi: 10.1016/j.matpr.2018.02.162
    [8] LIU H, XU S H, GE X M, et al. Automatic sedimentary microfacies identification from logging curves based on deep process neural network [J]. Cluster Computing,2019,22:12451-12457. doi: 10.1007/s10586-017-1656-z
    [9] HWEJU Z, ABOU-El-HOSSEIN K. Surface roughness prediction based on acoustic emission signals in high-precision diamond turning of rapidly solidified optical aluminum grade (RSA443) [J]. Key Engineering Materials, 2020, 841: 363-368.
    [10] 郭力, 杜厚斌, 邓喻. 硬质合金PA30高速深磨过程中声发射信号特征的变化研究 [J]. 金刚石与磨料磨具工程,2017,37(3):35-39. doi: 10.13394/j.cnki.jgszz.2017.3.0008

    GUO Li, DU Houbin, DENG Yu. Characteristic changes of acoustic emission(AE) signal during high speed deep grinding of cemented carbide PA30 [J]. Diamond & Abrasives Engineering,2017,37(3):35-39. doi: 10.13394/j.cnki.jgszz.2017.3.0008
    [11] PANDIYAN V, CAESARENDRA W, TJAHJOWIDODO T, et al. In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm [J]. Journal of Manufacturing Processes,2018,31:199-213. doi: 10.1016/j.jmapro.2017.11.014
    [12] MAHATA S, SHAKYA P, BABU N R. A robust condition monitoring methodology for grinding wheel wear identification using Hilbert Huang transform [J]. Precision Engineering,2021,70:77-91. doi: 10.1016/j.precisioneng.2021.01.009
    [13] QI J, CHEN B, ZHANG D. Multi-information fusion-based belt condition monitoring in grinding process using the improved-Mahalanobis distance and convolutional neural networks [J]. Journal of Manufacturing Processes,2020,59:302-315. doi: 10.1016/j.jmapro.2020.09.061
    [14] WANG N, ZHANG G, REN L, et al. Vision and sound fusion-based material removal rate monitoring for abrasive belt grinding using improved LightGBM algorithm [J]. Journal of Manufacturing Processes,2021,66:281-292. doi: 10.1016/j.jmapro.2021.04.014
    [15] LIU C W, CHEN H C, LIN S C. Acoustic emission monitoring system for hard polishing of sapphire wafer [J]. Sensors and Materials,2019,31(9):2681-2689. doi: 10.18494/SAM.2019.2369
    [16] WANG R, JIANG J C, PAN Y, et al. Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices [J]. Journal of Hazardous Materials,2009,166(1):155-186. doi: 10.1016/j.jhazmat.2008.11.005
    [17] GAO L, LI F, HUO P D, et al. Accurate prediction of the extrusion forming bonding reliability for heterogeneous welded sheets based on GA-BP neural network [J]. The International Journal of Advanced Manufacturing Technology,2021,117:765-774. doi: 10.1007/s00170-021-07797-7
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  139
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-22
  • 修回日期:  2022-12-08
  • 录用日期:  2022-12-08
  • 网络出版日期:  2023-12-07
  • 刊出日期:  2023-10-20

目录

    /

    返回文章
    返回