CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石刀具微纳米切削单晶镍亚表面损伤

孙思光 李翔

孙思光, 李翔. 金刚石刀具微纳米切削单晶镍亚表面损伤[J]. 金刚石与磨料磨具工程, 2023, 43(3): 313-321. doi: 10.13394/j.cnki.jgszz.2022.0149
引用本文: 孙思光, 李翔. 金刚石刀具微纳米切削单晶镍亚表面损伤[J]. 金刚石与磨料磨具工程, 2023, 43(3): 313-321. doi: 10.13394/j.cnki.jgszz.2022.0149
SUN Siguang, LI Xiang. Subsurface damage of single crystal nickel by micro-nanometric cutting with diamond tool[J]. Diamond & Abrasives Engineering, 2023, 43(3): 313-321. doi: 10.13394/j.cnki.jgszz.2022.0149
Citation: SUN Siguang, LI Xiang. Subsurface damage of single crystal nickel by micro-nanometric cutting with diamond tool[J]. Diamond & Abrasives Engineering, 2023, 43(3): 313-321. doi: 10.13394/j.cnki.jgszz.2022.0149

金刚石刀具微纳米切削单晶镍亚表面损伤

doi: 10.13394/j.cnki.jgszz.2022.0149
基金项目: 河北省人力资源社会保障厅课题(JRSJY-2022-1041)。
详细信息
    作者简介:

    孙思光,男,1985年生,本科。主要研究方向:电气自动化。E-mail:371168557@qq.com

  • 中图分类号: TQ164;TG58;TG71;TH161

Subsurface damage of single crystal nickel by micro-nanometric cutting with diamond tool

  • 摘要: 采用分子动力学软件Lammps研究金刚石刀具微纳米切削单晶镍的微观动态过程,分析不同切削方向和不同切削深度下单晶镍微纳米切削过程中缺陷的类型、切削力和损伤的关系以及位错线的演化规律。结果表明:刀具的挤压和剪切作用使单晶镍工件产生高压相变区和非晶区,其亚表层存在原子团簇和位错滑移。沿[100]晶向切削,切削力最小,且位错损伤层厚度最小为2.15 nm;沿[111]晶向切削,表面层的质量最好,但损伤层厚度最大为3.75 nm。切削过程中,位错线的总长度整体呈上升趋势,[110]方向去除的原子区域最大,位错线长度最大。切削深度越大,晶体内部的位错滑移和非晶化越严重。

     

  • 图  1  金刚石刀具微纳米切削单晶镍模型

    Figure  1.  Model of single crystal nickel cutting with diamond tool

    图  2  沿[100]方向切削单晶镍中心的对称参数图像

    Figure  2.  Centrosymmetric parameter image of single crystal nickel cutting along the [100] direction. (velocity is 100 m/s, cutting

    图  3  沿[100]方向切削单晶镍的位错线类型

    Figure  3.  Types of single crystal nickel dislocation lines cutting along the [100] direction

    图  4  沿[100]、[110]、[111]方向切削单晶镍的切削力

    Figure  4.  Cutting force of single crystal nickel along [100], [110], [111] directions

    图  5  沿[100]、[110]、[111]方向切削单晶镍的亚表面损伤层

    Figure  5.  The subsurface damage layer of single crystal nickel cutting along the [100], [110], [111] directions

    图  6  沿[100]、[110]、[111]方向切削单晶镍的表面形貌和原子堆积

    Figure  6.  Atomic stacking on the surface morphology of single crystal nickel cutting along the [100], [110], [111] directions

    图  7  堆积的镍原子的数量

    Figure  7.  The number of stacked nickel atoms

    图  8  沿[100]方向切削单晶镍的位错线变化

    Figure  8.  Variation of dislocation lines of single-crystal nickel cutting along the [100] direction

    图  9  沿[100]、[110]、[111]方向切削单晶镍位错线长度的变化

    Figure  9.  Variation of the length of dislocation lines of single crystal nickel cutting along the [100], [110] and [111] direction

    图  10  不同切削深度下摩擦系数的变化

    Figure  10.  Variation of friction coefficient at different cutting depths

    图  11  不同切削深度下位错线长度和晶体结构

    Figure  11.  Length of dislocation line and crystal structure at different cutting depths

    图  12  不同切削深度下单晶镍亚表层缺陷DXA图

    Figure  12.  DXA diagram of single crystal nickel subsurface defects at different cutting depths

  • [1] JIN S, RUOFF R S. Preparation and uses of large area single crystal metal foils [J]. Applied Physics Letters Materials,2019,7(10):100905.
    [2] LI Y L Z, SUN L Z, LIU H Y, et al. Preparation of single-crystal metal substrates for the growth of high-quality two-dimensional materials [J]. Inorganic Chemistry Frontiers,2021,8(1):182-200. doi: 10.1039/D0QI00923G
    [3] WANG B B, WANG F C, ZHAO Y P. Surface crystallographic structure insensitive growth of oriented graphene domains on Cu substrates [J]. Materials Today,2020,36:10-17. doi: 10.1016/j.mattod.2019.12.001
    [4] GAO Q, GONG Y, ZHOU Y, et al. Experimental study of micro-milling mechanism and surface quality of a nickel-based single crystal superalloy [J]. Journal of Mechanical Science and Technology,2017,31(1):171-180. doi: 10.1007/s12206-016-1218-y
    [5] 甘子豪. 单晶镍纳米加工的分子动力学仿真研究[D]. 沈阳: 东北大学, 2015.

    GAN Zihao. Research on single-crystal nickel nano-machining by molecular dynamics simulation[D]. Shenyang: Northeastern University, 2015.
    [6] 朱宗孝. 单晶镍纳米加工表面与切屑形成机理及影响因素研究 [D]. 沈阳: 东北大学, 2017.

    ZHU Zongxiao. Study on mechanism and influencing factors of surface and chip generation in nanomeric machining of single crystal nickel [D]. Shenyang: Northeastern University, 2017.
    [7] FENG R C, YANG S G, SHAO Z H, et al. Atomistic simulation of effects of random roughness on nano-cutting process of y-TiAl alloy [J]. Rare Metal Materials and Engineering,2022,51(5):1650-1659.
    [8] FENG R C, QIAO H Y, ZHU Z X, et al. Molecular dynamics simulations of single crystal gamma-TiAl alloy in nanometric cutting process [J]. Rare Metal Materials and Engineering,2019,48(5):1559-1566.
    [9] GOEL A, LUO X C, REUBEN R L. Wear mechanism of diamond tools against single crystal silicon in single point diamond turning process [J]. Tribology International,2013,57(57):272-281.
    [10] IKAWA N, SHIMADA S, TANAKA H, et al. An atomistic analysis of nanometric chip removal as affected by tool-work interaction in diamond turning [J]. Annals of the CIRP,1991,40(1):551-554. doi: 10.1016/S0007-8506(07)62051-4
    [11] LUO L, YANG X J. Molecular dynamics simulation and experimental study of single crystalline germanium cutting process [J]. Cirp Annals Manufacturing Technology,2019,48(12):3863-3869.
    [12] MENG B B, YUAN D D, XU S L. Atomic-scale characterization of slip deformation and nanometric machinability of single-crystal 6H-SiC [J]. Nanoscale Research Letters,2019,14(1):1-9. doi: 10.1186/s11671-018-2843-4
    [13] GONG Y D, ZHU Z X, ZHOU Y G, et al. Research on the nanometric machining of a single crystal nickel via molecular dynamics simulation [J]. Science China Technological Sciences,2016,59(12):1837-1746. doi: 10.1007/s11431-016-0251-y
    [14] ZHU Z X, GONG Y D, ZHOU Y G, et al. Molecular dynamics simulation of single crystal Nickel nanometric machining [J]. Science China Technological Sciences,2016,59(6):867-875. doi: 10.1007/s11431-016-6061-y
    [15] 朱宗孝,巩亚东,周云光,等. 前角对单晶镍纳米加工影响的分子动力学仿真 [J]. 东北大学学报(自然科学版),2017,38(10):1436-1441. doi: 10.12068/j.issn.1005-3026.2017.10.014

    ZHU Zongxiao, GONG Yadong, ZHOU Yunguang, et al. Molecular dynamics simulating effect of rake angle on single crystal nickel nanometric machining [J]. Journal of Northeastern University (Natural Science),2017,38(10):1436-1441. doi: 10.12068/j.issn.1005-3026.2017.10.014
    [16] 任洁. 单晶镍纳米加工的表面质量和亚表面损伤研究 [D]. 太原: 太原理工大学, 2016.

    REN Jie. Surface quality and subsurface damage of monocrystalline nickel nanomachining[D]. Taiyuan: Taiyuan University of Technology, 2016.
    [17] 任洁, 郝明锐, 梁国星, 等. 重复加工对单晶镍表面形貌及亚表面缺陷的影响 [J]. 稀有金属材料与工程,2021,50(8):2897-2904.

    REN Jie, HAO Mingrui, LIANG Guoxing, et al. Influence of repeated processing on surface morphology and sub-surface damage of monocrystalline nickel [J]. Rare Metal Materials and Engineering,2021,50(8):2897-2904.
    [18] 郝兆朋, 兰鹤, 范依航. 基于分子动力学的SiC刀具切削单晶镍刀具磨损分析 [J]. 机械工程师,2019(9):5-8.

    HAO Zhaopeng, LAN He, FAN Yihang. Wear analysis of sic cutting tool in cutting single crystal nickel based on molecular dynamics [J]. Mechanical Engineer,2019(9):5-8.
    [19] 苟勇军. 基于分子动力学的单晶钨切削亚表面损伤研究 [D]. 大连: 大连理工大学, 2021.

    GOU Yongjun. Study on subsurface damage of nano-cutting single crystal tungsten based on molecular dynamics[D]. Dalian: Dalian University of Technology, 2021.
  • 加载中
图(12)
计量
  • 文章访问数:  434
  • HTML全文浏览量:  169
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-10
  • 修回日期:  2022-10-15
  • 录用日期:  2022-10-28
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回