CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于响应曲面法和NSGA2的凸轮轴磨削参数优化

项雄标 张新娜 周康康 徐向纮

项雄标, 张新娜, 周康康, 徐向纮. 基于响应曲面法和NSGA2的凸轮轴磨削参数优化[J]. 金刚石与磨料磨具工程, 2023, 43(3): 348-354. doi: 10.13394/j.cnki.jgszz.2022.0141
引用本文: 项雄标, 张新娜, 周康康, 徐向纮. 基于响应曲面法和NSGA2的凸轮轴磨削参数优化[J]. 金刚石与磨料磨具工程, 2023, 43(3): 348-354. doi: 10.13394/j.cnki.jgszz.2022.0141
XIANG Xiongbiao, ZHANG Xinna, ZHOU Kangkang, XU Xianghong. Optimization of camshaft grinding parameters based on response surface method and NSGA2[J]. Diamond & Abrasives Engineering, 2023, 43(3): 348-354. doi: 10.13394/j.cnki.jgszz.2022.0141
Citation: XIANG Xiongbiao, ZHANG Xinna, ZHOU Kangkang, XU Xianghong. Optimization of camshaft grinding parameters based on response surface method and NSGA2[J]. Diamond & Abrasives Engineering, 2023, 43(3): 348-354. doi: 10.13394/j.cnki.jgszz.2022.0141

基于响应曲面法和NSGA2的凸轮轴磨削参数优化

doi: 10.13394/j.cnki.jgszz.2022.0141
基金项目: 浙江省重点研发计划(2019C01128);金华市科技计划(2020-1-030)。
详细信息
    通讯作者:

    张新娜,女,1970年生,副教授、硕士生导师。主要研究方向:精密数控与智能监控、机器视觉与质量检测分析。E-mail:sinnar@cjlu.edu.cn

  • 中图分类号: TG580.63;TH161.1

Optimization of camshaft grinding parameters based on response surface method and NSGA2

  • 摘要: 为改善20CrMo钢凸轮轴磨削加工的质量和效率,基于响应曲面法进行磨削试验,分析磨削工艺参数对其表面粗糙度的影响,并建立相应的回归模型。根据工件形状特点,建立工件薄弱部位瞬时材料去除率计算模型,将表面粗糙度和材料去除率作为优化目标,利用第二代非支配快速排序遗传算法(non-dominated sorting genetic algorithm-2,NSGA2)进行多目标工艺参数组合寻优并进行试验验证。结果表明:求解得到的最优工艺参数组合是砂轮线速度为60 m/s、工件转速为96 r/min、磨削深度为30 μm,在保证工件薄弱部位表面粗糙度满足加工要求的前提下,可有效提高其磨削加工效率。

     

  • 图  1  凹面凸轮轴

    Figure  1.  Concave camshaft

    图  2  磨削试验系统

    Figure  2.  Grinding test system

    图  3  表面粗糙度响应曲面图

    Figure  3.  Response surface diagram of surface roughness

    图  4  工艺参数优化流程图

    Figure  4.  Process parameter optimization flow chart

    图  5  Pareto最优解集结果

    Figure  5.  Result of Pareto optimal solution set

    图  6  优化后工件表面形貌和轮廓曲线

    Figure  6.  Optimized workpiece surface topography and contour curve

    表  1  磨削试验参数取值

    Table  1.   Parameter value of grinding test

    水平因素
    砂轮线速度
    vs /(m·s−1
    工件转速
    nw /(r·min−1
    磨削深度
    ap /μm
    −1 60 40 10
    0 75 70 20
    1 90 100 30
    下载: 导出CSV

    表  2  磨削试验方案及结果

    Table  2.   Grinding test scheme and results

    序号 水平取值$ \mathrm{表}\mathrm{面}\mathrm{粗}\mathrm{糙}\mathrm{度}{R}_{\mathrm{a}} $ /μm
    $ {v}_{\mathrm{s}} $$ {n}_{\mathrm{w}} $$ {a}_{\mathrm{p}} $
    1 −1 −1 0 0.151
    2 1 −1 0 0.114
    3 −1 1 0 0.143
    4 1 1 0 0.196
    5 −1 0 −1 0.166
    6 1 0 −1 0.121
    7 −1 0 1 0.156
    8 1 0 1 0.188
    9 0 −1 −1 0.127
    10 0 1 −1 0.162
    11 0 −1 1 0.147
    12 0 1 1 0.206
    13 0 0 0 0.133
    下载: 导出CSV

    表  3  表面粗糙度回归模型方差

    Table  3.   Variance of regression model for surface roughness

    方差来源自由度均方差

    FP
    模型90.009 720.070 00.015 7
    $ {v}_{\mathrm{s}} $1$ 1. 125\times {10}^{-6} $0.020 90.894 1
    $ {n}_{\mathrm{w}} $10.003 565.640 00.003 9
    $ {a}_{\mathrm{p}} $10.001 834.050 00.010 0
    $ {v}_{\mathrm{s}}{n}_{\mathrm{w}} $10.002 037.670 00.008 7
    $ {v}_{\mathrm{s}}{a}_{\mathrm{p}} $10.001 527.580 00.013 4
    $ {n}_{\mathrm{w}}{a}_{\mathrm{p}} $10.000 12.680 00.200 2
    $ {{v}_{\mathrm{s}}}^{2} $10.000 12.470 00.213 9
    $ {{n}_{\mathrm{w}}}^{2} $10.000 24.580 00.121 9
    $ {{a}_{\mathrm{p}}}^{2} $10.000 712.470 00.038 6
    ${R^2}{\rm{ = }}0.983\;7\;\;\;\;\;R_{{\rm{adj}}}^{\rm{2}} = 0.934\;6$
    下载: 导出CSV
  • [1] 韩文强, 何辉波, 李华英, 等. TiN涂层刀具对20CrMo钢的干切削性能的影响及磨损机理 [J]. 中南大学学报(自然科学版),2014,45(1):64-70.

    HAN Wenqiang, HE Huibo, LI Huaying, et al. Effect of TiN coated tools on machinability and wear mechanism in dry turning of 20CrMo steel [J]. Journal of Central South University(Science and Technology),2014,45(1):64-70.
    [2] 林述温, 刘衍聪, 莫开旺. 轴承沟道磨削工艺参数对磨削变质层的影响规律 [J]. 轴承,1996(12):21-23,28,38.

    LIN Shuwen, LIU Yancong, MO Kaiwang. Influence of process parameters on grinding deterioration layer in groove grinding of bearing [J]. Bearings,1996(12):21-23,28,38.
    [3] 刘伟, 商圆圆, 邓朝晖, 等. 基于响应曲面法的轴承钢GCr15高速外圆磨削参数优化 [J]. 中国机械工程,2019,30(23):2829-2834. doi: 10.3969/j.issn.1004-132X.2019.23.008

    LIU Wei, SHANG Yuanyuan, DENG Zhaohui, et al. Parameter optimization of high speed cylindrical grinding for bearing steel GCr15 based on response surface method [J]. China Mechanical Engineering,2019,30(23):2829-2834. doi: 10.3969/j.issn.1004-132X.2019.23.008
    [4] KABASAKAOGLU U, KARA F, KKLÜ U. Taguchi optimization of surface roughness in grinding of cryogenically treated AISI 5140 steel [J]. Materials Testing,2020,62(10):1041-1047. doi: 10.3139/120.111583
    [5] 肖军民, 谢晋. 20CrMnTi高速外圆磨削试验研究及参数优化 [J]. 机床与液压,2015,43(11):56-58,84. doi: 10.3969/j.issn.1001-3881.2015.11.016

    XIAO JunMin, XIE Jin. Experimental research and parameters optimization of high-speed cylindrical grinding for 20CrMnTi [J]. Machine Tool & Hydraulics,2015,43(11):56-58,84. doi: 10.3969/j.issn.1001-3881.2015.11.016
    [6] CHEN T, ZHU Y J, XI X X, et al. Process parameter optimization and surface integrity evolution in the highspeed grinding of TiAl intermetallics based on grey relational analysis method [J]. The International Journal of Advanced Manufacturing Technology,2021,117(9/10):2895-2908. doi: 10.1007/s00170-021-07882-x
    [7] 李云雁, 胡传荣. 试验设计与数据处理 [M]. 北京: 化学工业出版社, 2005.

    LI Yunyan, HU Chuanrong. Experiment design and data processing [M]. Beijing: Chemical Industry Press, 2005.
    [8] DENG Z H, ZHANG X H, LIU W, et al. A hybrid model using genetic algorithm and neural network for process parameters optimization in NC camshaft grinding [J]. The International Journal of Advanced Manufacturing Technology,2009,45(9/10):859-866. doi: 10.1007/s00170-009-2029-4
    [9] ZHANG P H, LI Z H, ZOU L, et al. Optimization of grinding process parameters based on BILSTM network and chaos sparrow search algorithm [J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering,2022,236(4):1693-1701. doi: 10.1177/09544089221074832
    [10] CHEN Z Y, LI X K, ZHU Z U, et al. The optimization of accuracy and efficiency for multistage precision grinding process with an improved particle swarm optimization algorithm[J]. International Journal of Advanced Robotic Systems, 2020, 17(1): 172988141989350.
    [11] PHOLDEE N, PATEL V K, SAIT S M, et al. Hybrid spotted hyena-nelder-mead optimization algorithm for selection of optimal machining parameters in grinding operations [J]. Materials Testing,2021,63(3):293-298. doi: 10.1515/mt-2020-0043
    [12] 姜惠兰, 安星, 王亚微, 等. 基于改进NSGA2算法的考虑风机接入电能质量的多目标电网规划 [J]. 中国电机工程学报,2015,35(21):5405-5411. doi: 10.13334/j.0258-8013.pcsee.2015.21.003

    JIANG Huilan, AN Xing, WANG Yawei, et al. Improved NSGA2 algorithm base multi-objective planning of power grid with wind farm considering power quality [J]. Proceedings of the CSEE,2015,35(21):5405-5411. doi: 10.13334/j.0258-8013.pcsee.2015.21.003
    [13] 徐童. 凹面凸轮磨削加工磨削力控制方法研究 [D]. 重庆: 重庆理工大学, 2019.

    XU Tong. Research on grinding force control method for concave cam grinding [D]. Chongqing: Chongqing University of Technology, 2019.
    [14] 刘涛, 邓朝晖, 罗程耀, 等. 基于动态磨削深度的非圆轮廓高速磨削稳定性建模与分析 [J]. 中国机械工程学报,2021,57(15):264-274. doi: 10.3901/JME.2021.15.264

    LIU Tao, DENG Zhaohui, LUO Chengyao, et al. Stability modeling and analysis of non-circular high-speed grinding with consideration of dynamic grinding depth [J]. Journal of Mechanical Engineering,2021,57(15):264-274. doi: 10.3901/JME.2021.15.264
    [15] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints [J]. IEEE Transactions on Evolutionary Computation,2014,18(4):577-601. doi: 10.1109/TEVC.2013.2281535
    [16] 李蓓智. 高速高质量磨削理论、工艺、装备与应用 [M]. 上海: 上海科学技术出版社, 2012: 60-63.

    LI Beizhi. Theory, process, equipment and application of high-speed high quality grinding [M]. Shanghai: Shanghai Science and Technology Press, 2012: 60-63.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  132
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-05
  • 修回日期:  2022-11-05
  • 录用日期:  2022-11-23
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回