CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DD9镍基单晶高温合金的缓进给磨削烧伤实验

康恺煜 余广渊 杨万鹏 董建民 蒋睿嵩

康恺煜, 余广渊, 杨万鹏, 董建民, 蒋睿嵩. DD9镍基单晶高温合金的缓进给磨削烧伤实验[J]. 金刚石与磨料磨具工程, 2023, 43(3): 355-363. doi: 10.13394/j.cnki.jgszz.2022.0132
引用本文: 康恺煜, 余广渊, 杨万鹏, 董建民, 蒋睿嵩. DD9镍基单晶高温合金的缓进给磨削烧伤实验[J]. 金刚石与磨料磨具工程, 2023, 43(3): 355-363. doi: 10.13394/j.cnki.jgszz.2022.0132
KANG Kaiyu, YU Guangyuan, YANG Wanpeng, DONG Jianmin, JIANG Ruisong. Experimental study on creep-feed grinding burn of DD9 Nickel-based single crystal superalloy[J]. Diamond & Abrasives Engineering, 2023, 43(3): 355-363. doi: 10.13394/j.cnki.jgszz.2022.0132
Citation: KANG Kaiyu, YU Guangyuan, YANG Wanpeng, DONG Jianmin, JIANG Ruisong. Experimental study on creep-feed grinding burn of DD9 Nickel-based single crystal superalloy[J]. Diamond & Abrasives Engineering, 2023, 43(3): 355-363. doi: 10.13394/j.cnki.jgszz.2022.0132

DD9镍基单晶高温合金的缓进给磨削烧伤实验

doi: 10.13394/j.cnki.jgszz.2022.0132
基金项目: 国家科技重大专项(2017-VI-0001-0070),四川省科技计划(2021YFG0049,2021ZHCG0009)。
详细信息
    通讯作者:

    蒋睿嵩,副研究员、博士生导师。主要研究方向:航空发动机复杂件高性能制造技术、多能场辅助加工技术等。E-mail:jiangrs@scu.edu.cn

  • 中图分类号: TG58; TG74; V19

Experimental study on creep-feed grinding burn of DD9 Nickel-based single crystal superalloy

  • 摘要:

    针对第三代单晶高温合金DD9磨削烧伤问题,设计三因素五水平实验,从表面形貌、显微硬度和显微组织等角度出发,研究磨削工艺参数对烧伤的影响规律。结果表明:当工件进给速度小于等于250 mm/min时,磨削表面粗糙度Ra在0.8 μm左右小幅度变化,表面质量较好;当工件进给速度大于250 mm/min,磨削深度超过1.0 mm后,磨削区域温度急剧上升,磨削纹路被破坏,出现涂覆、凹坑等磨削缺陷,工件表面发生烧伤;DD9合金缓进给磨削工件表面及表层均表现为加工硬化,显微硬度为400~600 HV,硬化层深度在50~110 μm,塑性变形层厚度为1~10 μm。推荐的DD9磨削工艺参数组合为:砂轮线速度vs=20 m/s,进给速度vw=250 mm/min,磨削深度ap=0.6 mm。

     

  • 图  1  DD9合金试板

    Figure  1.  DD9 superalloy test plate

    图  2  实验试块尺寸及磨削方向示意图

    Figure  2.  Schematic diagram of experimental block size and grinding direction

    图  3  金相试样制备

    Figure  3.  Metallographic specimen preparation

    图  4  磨削工艺参数对表面粗糙度的影响

    Figure  4.  Influence of grinding parameters on surface roughness

    图  5  砂轮线速度对二维表面形貌的影响

    Figure  5.  Influence of linear speed of the grinding wheel on 2D surface topography

    图  6  工件进给速度对二维表面形貌的影响

    Figure  6.  Influence of workpiece feed speed on 2D surface topography

    图  8  砂轮线速度对加工表层显微硬度影响

    Figure  8.  Influence of grinding wheel linear speed on surface microhardness

    图  7  磨削深度对二维表面形貌的影响

    Figure  7.  Influence of grinding depth on 2D surface topography

    图  9  进给速度对加工表层显微硬度影响

    Figure  9.  Influence of feed rate on surface microhardness

    图  10  磨削深度对加工表层显微硬度影响

    Figure  10.  The effect of grinding depth on surface microhardness

    图  11  磨削表面元素分布(vs=30 m/s,vw=50 mm/min,ap =1.0 mm)

    Figure  11.  Element distribution on grinding surface(vs=30 m/s,vw=50 mm/min,ap =1.0 mm)

    图  12  磨削深度方向显微组织

    Figure  12.  Grinding depth direction microstructure

    图  13  工艺参数对塑性变形层厚度影响

    Figure  13.  Influence of process parameters on the thickness of plastic deformation layer

    表  1  三因素五水平实验表

    Table  1.   Three-factor five-level experiment table

    水平因素
    砂轮线速度
    vs / (m·s-1)
    工件进给速度
    vw / (mm·min-1)
    磨削深度
    ap / mm
    −210 500.2
    −1151500.6
    0202501.0
    1253501.4
    2304501.8
    下载: 导出CSV

    表  2  烧伤与未烧伤DD9合金磨削表面元素含量对比(元素质量分数 ω / %)

    Table  2.   Comparison of element content on the ground surface of burnt and unburned DD9 alloys (element mass fraction ω / %)

    元素未烧伤表面轻度烧伤表面严重烧伤表面
    Ni 67.3 59.9 57.6
    O 0.1 5.3 5.7
    C 1.7 1.6 3.0
    Al 4.9 4.6 4.7
    Cr 3.4 3.0 2.8
    Co 7.2 6.9 7.7
    其他 15.4 18.7 18.5
    下载: 导出CSV
  • [1] LI J R, LIU S Z, WANG X G, et al. Development of a low-cost third generation single crystal superalloy DD9 [A]. Proceedings of the 13th International Symposium of Superalloys [C]. HOBOKEN, NJ: John Wiley & Sons, Inc. 2016: 57-63.
    [2] 《航空工程制造手册》总编委会. 航空制造工程手册 [M]. 北京: 北京航空工业出版社, 1998.

    Editor-in-chief of "Aeronautical Engineering Manufacturing Manual" . Aeronautical engineering manufacturing manual [M]. Beijing: Beijing Aviation Industry Press, 1998.
    [3] 张帅奇, 杨忠学, 张长春, 等. DD5镍基单晶高温合金缓进磨削力和温度实验研究 [J]. 航空工程进展,2021,12(4):80-89. doi: 10.16615/j.cnki.1674-8190.2021.04.09

    ZHANG Shuaiqi, YANG Zhongxue, ZHANG Changchun, et al. Experimental study on creep grinding force and temperature of DD5 nickel-based single crystal superalloy [J]. Advances in Aeronautical Science and Engineering,2021,12(4):80-89. doi: 10.16615/j.cnki.1674-8190.2021.04.09
    [4] SUN Y, SU Z P, GONG Y D, et al. Analytical and experimental study on micro-grinding surface-generated mechanism of DD5 single-crystal superalloy using micro-diamond pencil grinding tool [J]. Archives of Civil and Mechanical Engineering,2021,21(1):1-22. doi: 10.1007/s43452-020-00148-5
    [5] 靳淇超, 曹帅帅, 汪文虎, 等. DD5镍基单晶高温合金缓进磨削表面完整性研究 [J]. 西北工业大学学报,2022,40(1):189-198. doi: 10.3969/j.issn.1000-2758.2022.01.024

    JIN Qichao, CAO Shuaishuai, WANG Wenhu, et al. Research on surface integrity of DD5 nickel-based single crystal superalloy slow-feed grinding [J]. Journal of Northwestern Polytechnical University,2022,40(1):189-198. doi: 10.3969/j.issn.1000-2758.2022.01.024
    [6] CAI M, GONG Y D, SUN Y, et al. Experimental study on grinding surface properties of nickel-based single crystal superalloy DD5 [J]. The International Journal of Advanced Manufacturing Technology,2019,101:71-85. doi: 10.1007/s00170-018-2839-3
    [7] 蔡明, 巩亚东, 屈硕硕, 等. 镍基单晶高温合金磨削表面质量及亚表面微观组织试验 [J]. 东北大学学报 (自然科学版),2019,40(3):386-391.

    CAI Ming, GONG Yadong, QU Shuoshuo, et al. Grinding surface quality and subsurface microstructure test of nickel-based single crystal superalloy [J]. Journal of Northeastern University (Natural Science),2019,40(3):386-391.
    [8] GU Y L, LI H N, DU B C, et al. Towards the understanding of creep-feed deep grinding of DD6 nickel-based single-crystal superalloy [J]. International Journal of Advanced Manufacturing Technology,2019,100:445-455. doi: 10.1007/s00170-018-2686-2
    [9] 顾玉栊. 刚玉砂轮缓进深切磨削加工镍基单晶合金叶片榫头研究 [D]. 南京: 南京航空航天大学, 2019.

    GU Yulong. Research on the slow-feed and deep-cut grinding of corundum grinding wheel for nickel-based single crystal alloy blade tenon [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
    [10] THANEDAR A, DONGER G G, SINGH R, et al. Surface integrity investigation including grinding burns using barkhausen noise (BNA) [J]. Journal of Manufacturing Processes,2017,30:226-240. doi: 10.1016/j.jmapro.2017.09.026
    [11] 苏旭峰. 高温合金缓进磨削烧伤机理实验研究 [J]. 中国计量学院学报,2009,20(1):46-50.

    SU Xufeng. Experimental research on burning mechanism of superalloy creep-feed grinding [J]. Journal of China University of Metrology,2009,20(1):46-50.
    [12] ZHANG S Q, YANG Z X, JIANG R S, et al. Effect of creep feed grinding on surface integrity and fatigue life of Ni3Al based superalloy IC10 [J]. Chinese Journal of Aeronautics,2021,34(1):438-448. doi: 10.1016/j.cja.2020.02.025
    [13] DING W F, XU J H, CHEN Z Z, et al. Grindability and surface integrity of cast nickel-based superalloy in creep feed grinding with brazed CBN abrasive wheels [J]. Chinese Journal of Aeronautics,2010,23:501-510. doi: 10.1016/S1000-9361(09)60247-8
    [14] ZHAO Z C, QIAN N, DING W F, et al. Profile grinding of DZ125 nickel-based superalloy: Grinding heat, temperature field, and surface quality [J]. Journal of Manufacturing Processes,2020,57:10-22. doi: 10.1016/j.jmapro.2020.06.022
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  108
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-19
  • 修回日期:  2022-10-12
  • 录用日期:  2023-11-23
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回