CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金字塔型砂带磨粒排布对表面磨抛形貌的影响

李孝辉 田凤杰 韩晓 李论

李孝辉, 田凤杰, 韩晓, 李论. 金字塔型砂带磨粒排布对表面磨抛形貌的影响[J]. 金刚石与磨料磨具工程, 2023, 43(3): 364-370. doi: 10.13394/j.cnki.jgszz.2022.0113
引用本文: 李孝辉, 田凤杰, 韩晓, 李论. 金字塔型砂带磨粒排布对表面磨抛形貌的影响[J]. 金刚石与磨料磨具工程, 2023, 43(3): 364-370. doi: 10.13394/j.cnki.jgszz.2022.0113
LI Xiaohui, TIAN Fengjie, HAN Xiao, LI Lun. Effect of abrasive particle arrangement on surface morphology ground with pyramid belt[J]. Diamond & Abrasives Engineering, 2023, 43(3): 364-370. doi: 10.13394/j.cnki.jgszz.2022.0113
Citation: LI Xiaohui, TIAN Fengjie, HAN Xiao, LI Lun. Effect of abrasive particle arrangement on surface morphology ground with pyramid belt[J]. Diamond & Abrasives Engineering, 2023, 43(3): 364-370. doi: 10.13394/j.cnki.jgszz.2022.0113

金字塔型砂带磨粒排布对表面磨抛形貌的影响

doi: 10.13394/j.cnki.jgszz.2022.0113
基金项目: 省教育厅重点攻关项目(LJKZZ20220036);国家自然科学基金-辽宁省联合基金(U1908230)。
详细信息
    通讯作者:

    田凤杰,男,1973年生,教授。主要研究方向:精密与超精密加工,机器人自动化磨抛加工。E-mail:tfj9311123@yeah.net

  • 中图分类号: ATH122;TG58

Effect of abrasive particle arrangement on surface morphology ground with pyramid belt

  • 摘要: 为研究金字塔型砂带磨粒排布对磨抛加工工件表面形貌的影响,建立金字塔型砂带磨抛加工的数学模型及解析算法,采用Abaqus软件进行粗糙度值的模拟仿真预测,通过机器人磨抛系统平台进行金字塔型砂带磨抛实验并检测加工后工件的表面形貌,与仿真预测值进行对比。结果表明:粗糙度仿真预测值与实际测量值变化趋势相同,吻合度良好,误差在0.03 μm以内,最大误差率为16.6%。仿真模型与实验过程保持一致,可以用于预测金字塔型砂带磨抛加工的表面粗糙度。

     

  • 图  1  金字塔型砂带微观平铺图

    Figure  1.  Microscopic tiling of pyramid abrasive belt

    图  2  金字塔型砂带磨粒排布示意图

    Figure  2.  Schematic diagram of grain arrangement of pyramid abrasive belt

    图  3  矩阵排布

    Figure  3.  Matrix arrangement

    图  4  斜矩阵排布

    Figure  4.  Slanted matrix arrangement

    图  5  金字塔砂带磨粒位置坐标

    Figure  5.  Position coordinates of pyramidal abrasive belt grain

    图  6  单磨粒运动轨迹示意

    Figure  6.  Single abrasive particle grinding and polishing motion trajectory

    图  7  相邻两磨粒运动轨迹

    Figure  7.  Motion trajectory of two adjacent abrasive particles

    图  8  砂带磨削运动过程

    Figure  8.  Abrasive belt grinding motion process

    图  9  金字塔砂带相邻磨粒间距

    Figure  9.  Spacing between adjacent abrasive grains of pyramid abrasive belt

    图  10  金字塔型砂带物理模型

    Figure  10.  Physical model of pyramid abrasive belt

    图  11  仿真工件磨抛表面形貌

    Figure  11.  Surface morphology of simulated workpiece grinding

    图  12  表面轮廓位移曲线

    Figure  12.  Surface profile displacement curve

    图  13  工件表面照片

    Figure  13.  Photo of the workpiece surface

    图  14  粗糙度轮廓仪下工件的表面形貌

    Figure  14.  Surface morphology of workpiece under roughness profiler

    图  15  工件表面实际轮廓曲线

    Figure  15.  Actual contour curve of workpiece surface

    表  1  磨料和工件的力学性能

    Table  1.   Mechanical properties of abrasives and workpieces

    材料性质取值
    磨料工件
    密度 ρ / (g·cm−33.964.68
    弹性模量 E / GPa370.0115.8
    热导率 K / (W·m−1·K−1)29.37.5
    泊松比 μ0.220.29
    热膨胀系数 β / (m·K−1)8.610.0
    比热容 c / (J·kg−1·K −1)600605
    下载: 导出CSV

    表  2  TC17 Johnson-Cook本构模型参数[14]

    Table  2.   TC17 Johnson-Cook constitutive model parameters[14]

    参数数值
    A / MPa1 100
    B / MPa590
    C0.015 2
    N0.41
    M0.833
    Tr / ℃25
    Tm / ℃1 675
    下载: 导出CSV

    表  3  仿真结果

    Table  3.   Simulation result

    序号砂带粒度号磨抛力 F /NRa-仿真 / μm
    1P1501.00.14
    2P1501.50.15
    3P1502.00.18
    4P1502.50.20
    5P1503.00.24
    6P2202.00.14
    7P3202.00.12
    8P6002.00.09
    9P10002.00.05
    下载: 导出CSV

    表  4  表面粗糙度仿真预测值与实验测量值

    Table  4.   Surface roughness simulation prediction value and experimental measurement value

    序号砂带粒度号磨抛力 F / NRa-仿真 / μmRa-实验 / μm误差率
    ξ/%
    1 P150 1.0 0.14 0.15 6.7
    2 P150 1.5 0.15 0.17 11.8
    3 P150 2.0 0.18 0.21 14.3
    4 P150 2.5 0.20 0.23 13.0
    5 P150 3.0 0.24 0.26 7.7
    6 P220 2.0 0.14 0.16 12.5
    7 P320 2.0 0.12 0.11 9.1
    8 P600 2.0 0.09 0.08 12.5
    9 P1000 2.0 0.05 0.06 16.6
    下载: 导出CSV
  • [1] SHI Z, MALKIN S. Wear of electroplated cBN grinding wheels [J]. Journal of Manufacturing Science and Engineering,2006,128(1):110-118. doi: 10.1115/1.2122987
    [2] 刘鹏展, 邹文俊, 彭进. 堆积磨料制备技术及堆积磨料砂带应用现状 [J]. 超硬材料工程,2017,29(3):40-44.

    LIU Pengzhan, ZOU Wenjun, PENG Jin. Bulk abrasive preparation technology and the application status of bulk abrasive belt [J]. Superhard Material Engineering,2017,29(3):40-44.
    [3] BRINKSMEIER E, MUTLUGÜNES Y, KLOCKE F, et al. Ultra-precision grinding [J]. CIRP Annals - Manufacturing Technology,2010,59(2):652-671. doi: 10.1016/j.cirp.2010.05.001
    [4] 郭高锋, 张凤林, 周玉梅. 单层钎焊CBN砂轮中磨粒有序排布形式对工件表面粗糙度的影响 [J]. 超硬材料工程,2013,25(2):1-5.

    GUO Gaofeng, ZHANG Fenglin, ZHOU Yumei. Effect of the form for orderly arraying of cBN grits in monolayer brazed cBN grinding wheels on the surface roughness of workpieces [J]. Superhard Material Engineering,2013,25(2):1-5.
    [5] KOSHY P, IWASALD A, ELBESTAWL M A. Surface generation with engineered diamond grinding wheels: Insights from simulation [J]. CIRP Annals - Manufacturing Technology,2003,52(1):271-274. doi: 10.1016/S0007-8506(07)60582-4
    [6] 马天嵘, 党嘉强, 安庆龙. 基于DEFORM3D的伺服阀芯端面磨削毛刺形成仿真 [J]. 金刚石与磨料磨具工程,2019,39(5):50-56. doi: 10.13394/j.cnki.jgszz.2019.5.0010

    MA Tianrong, DANG Jiaqiang, AN Qinglong. Burr formation simulation of end face grinding core of servo valve based on DEFORM3D [J]. Diamond & Abrasives Engineering,2019,39(5):50-56. doi: 10.13394/j.cnki.jgszz.2019.5.0010
    [7] 赵国伟, 吕玉山, 李雨菲, 等. 有序化砂轮磨抛表面粗糙度仿真 [J]. 机械设计与制造,2018(3):223-225, 229.

    ZHAO Guowei, LÜ Yushan, LI Yufei, et al. Simulation of the surface roughness with grinding wheel of ordered abrasive pattern [J]. Machinery Design & Manufacture,2018(3):223-225, 229.
    [8] BUTLER-SMITH P W, AXINTE D A, DAINE M. Preferentially oriented diamond micro-arrays: A laser patterning technique and preliminary evaluation of their cutting forces and wear characteristics [J]. International Journal of Machine Tools & Manufacture,2009,49(15):1175-1184. doi: 10.1016/j.ijmachtools.2009.08.007
    [9] 杨威, 朱建辉, 师超钰, 等. 砂轮表面磨粒出露高度对轴承钢磨削振动的影响 [J]. 金刚石与磨料磨具工程,2019,39(5):73-78. doi: 10.13394/j.cnki.jgszz.2019.5.0013

    YANG Wei, ZHU Jianhui, SHI Chaoyu, et al. Effect of abrasive particle exposure height on grinding vibration of bearing steel [J]. Diamond & Abrasives Engineering,2019,39(5):73-78. doi: 10.13394/j.cnki.jgszz.2019.5.0013
    [10] 黄云, 甲花索朗, 肖贵坚. 镍铝青铜合金仿生表面的砂带磨削及其降噪特性 [J]. 中国机械工程,2020,31(20):2497-2504.

    HUANG Yun, JIAHUA Suolang, XIAO Guijian. Bionic surface abrasive belt grinding of nickel-aluminum bronze alloy and its noise reduction characteristics [J]. China Mechanical Engineering,2020,31(20):2497-2504.
    [11] 肖贵坚, 贺毅, 黄云, 等. 基于单颗粒模型的航发叶片砂带磨削微观仿生锯齿状表面形成及实验 [J]. 航空学报,2020,41(7):27-36.

    XIAO Guijian, HE Yi, HUANG Yun, et al. Single particle removal model and experimental study on micro bionic zigzag surface of aeronautical blade using belt grinding [J]. Acta Aeronautica et Astronautica Sinica,2020,41(7):27-36.
    [12] HOLMES G L, CULLER S R, HARDY D H, et al. Precisely shaped particles and method of making the same: US5549962 [P]. 1996-8-27.
    [13] KATARIA H, CARRANO A L, THORN B K. Modeling of tooling-workpiece interactions on random surfaces [J]. Advances in Mechanical Engineering,2012,4:1-8. doi: 10.1155/2012/807018
    [14] 王宝林. 钛合金TC17力学性能及其切削加工特性研究 [D]. 济南: 山东大学, 2013.

    WANG Baolin. Study on the mechanical properties of titanium alloy TC17 and characteristics in machining [D]. Jinan: Shandong University, 2013.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  299
  • HTML全文浏览量:  109
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-20
  • 修回日期:  2022-08-22
  • 录用日期:  2022-10-08
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回