CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡轮叶片内冷通道的磨料流光整加工特性

郑志鑫 董志国 李孟楠 雷鸿博

郑志鑫, 董志国, 李孟楠, 雷鸿博. 涡轮叶片内冷通道的磨料流光整加工特性[J]. 金刚石与磨料磨具工程, 2023, 43(1): 110-117. doi: 10.13394/j.cnki.jgszz.2022.0093
引用本文: 郑志鑫, 董志国, 李孟楠, 雷鸿博. 涡轮叶片内冷通道的磨料流光整加工特性[J]. 金刚石与磨料磨具工程, 2023, 43(1): 110-117. doi: 10.13394/j.cnki.jgszz.2022.0093
ZHENG Zhixin, DONG Zhiguo, LI Mengnan, LEI Hongbo. Abrasive flow finishing characteristics of internal cooling channel of turbine blade[J]. Diamond & Abrasives Engineering, 2023, 43(1): 110-117. doi: 10.13394/j.cnki.jgszz.2022.0093
Citation: ZHENG Zhixin, DONG Zhiguo, LI Mengnan, LEI Hongbo. Abrasive flow finishing characteristics of internal cooling channel of turbine blade[J]. Diamond & Abrasives Engineering, 2023, 43(1): 110-117. doi: 10.13394/j.cnki.jgszz.2022.0093

涡轮叶片内冷通道的磨料流光整加工特性

doi: 10.13394/j.cnki.jgszz.2022.0093
基金项目: 山西省自然科学基金(2021-0302-123104)
详细信息
    通讯作者:

    董志国,男,1975年生,博士、副教授。主要研究方向:磨料流光整加工。E-mail:dong_zhiguo@126.com

  • 中图分类号: TG73; TG58; TG664

Abrasive flow finishing characteristics of internal cooling channel of turbine blade

  • 摘要: 航空涡轮叶片内部的多冷却通道多采用消失模铸造等方法制造,其表面粗糙度较高,冷却效率低,内部流道截面小且呈S形弯曲狭长分布,不容易抛光。用Polyflow软件对叶片内冷通道进行仿真,研究其内部压力场、速度场的变化情况。在工件的4个典型区域进行S形内流道加工试验,研究表面粗糙度与材料去除量的变化规律。结果表明:经仿真,压力下降的幅度沿流动方向逐渐变小,速度由通道中心向壁面逐渐减小;相同试验条件下,S形流道转弯处的表面粗糙度比直流道处的低;流道内存在沿程压力损失,区域A比区域D的材料去除量大4~5倍。

     

  • 图  1  流体磨料

    Figure  1.  Fluid abrasive

    图  2  航空涡轮叶片[7]与工件

    Figure  2.  Aeroturbine blades[7] and workpiece

    图  3  磨粒与工件的相互作用

    Figure  3.  Interaction between abrasive particles and workpiece

    图  4  工件壁面处磨粒的微切削过程

    Figure  4.  Microcutting process of abrasive particles on workpiece wall surface

    图  5  S形流道模型与流道网格划分

    Figure  5.  S-shaped flow channel model and flow channel mesh division

    图  6  压力场沿流道的分布

    Figure  6.  Pressure field distribution along the flow passage

    图  7  速度场沿流道分布

    Figure  7.  Distribution of velocity field along flow passage

    图  8  磨料流加工试验平台

    Figure  8.  Abrasive flow machining test platform

    图  9  加工前表面显微照片

    Figure  9.  Micrograph of surface before machining

    图  10  表面粗糙度测量点分布区域

    Figure  10.  Distribution area of surface roughness measurement points

    图  11  Q235工件加工前后表面粗糙度

    Figure  11.  Surface roughness of Q235 workpiece before and after machining

    图  12  Q235工件加工后表面形貌

    Figure  12.  Appearance of Q235 workpiece after machining

    图  13  45钢工件加工前后表面粗糙度

    Figure  13.  Surface roughness of 45 steel workpiece before and after machining

    图  14  45钢工件加工后表面形貌

    Figure  14.  Shape of 45 steel workpiece after machining

    图  15  2种工件3次加工后的材料去除量

    Figure  15.  Material removal of two workpiece after three treatments

    表  1  流场网格划分数据

    Table  1.   Flow field meshing data

    类型最小尺寸a / m最大尺寸b / m单元数节点数平均网格质量
    数值3.415×10−56.831×10-327 77234 6500.928 67
    下载: 导出CSV

    表  2  试验方案

    Table  2.   Test scheme

    编号材料加工次数磨料粒度尺寸 d / mm磨粒质量分数 ω / %
    1Q23530.1530
    245钢30.1530
    345钢60.1530
    下载: 导出CSV
  • [1] 周建兴, 陶智, 吴宏, 等. 涡轮叶片尾缘复合冷却通道换热的数值模拟 [J]. 北京航空航天大学学报,2004,30(2):147-151. doi: 10.3969/j.issn.1001-5965.2004.02.013

    ZHOU Jianxing, TAO Zhi, WU Hong, et al. Numerical simulation of heat transfer in turbine blade trailing edge composite cooling passage [J]. Journal of Beijing University of Aeronautics and Astronautics,2004,30(2):147-151. doi: 10.3969/j.issn.1001-5965.2004.02.013
    [2] LI J, QU J, LU H, et al. Effectiveness analysis of abrasive flow polishing S-shaped elbow with side holes based on large eddy simulation [J]. The International Journal of Advanced Manufacturing Technology,2021,115:3887-3906. doi: 10.1007/s00170-021-07384-w
    [3] LI J, ZHU Z, HU J, et al. Particle collision-based abrasive flow mechanisms in precision machining [J]. International Journal of Advanced Manufacturing Technology,2020,110(7):1819-1831.
    [4] 高航, 付有志, 王宣平, 等. 螺旋面磨料流光整加工仿真与试验 [J]. 浙江大学学报(工学版),2016,50(5):920-926. doi: 10.3785/j.issn.1008973X.2016.05.015

    GAO Hang, FU Youzhi, WANG Xuanping, et al. Simulation and experiment of helical abrasive streamer finishing [J]. Journal of Zhejiang University (Engineering Science),2016,50(5):920-926. doi: 10.3785/j.issn.1008973X.2016.05.015
    [5] 计时鸣, 葛江勤, 高涛, 等. 基于CFD-DEM耦合的面约束软性磨粒流加工特性研究 [J]. 机械工程学报,2018,54(5):129-141. doi: 10.3901/JME.2018.05.129

    JI Shiming, GE Jiangqin, GAO Tao, et al. Research on machining characteristics of surface constrained soft abrasive flow based on CFD-DEM coupling [J]. Journal of Mechanical Engineering,2018,54(5):129-141. doi: 10.3901/JME.2018.05.129
    [6] WILLIAMS R. A acoustic emission characteristics of abrasive flow machining [J]. Journal of Manufacturing Science and Engineering,1998,120(2):264-271. doi: 10.1115/1.2830123
    [7] 穆轩. 航空发动机涡轮叶片气膜孔直径与位置度测量研究 [D]. 大连: 大连理工大学, 2018.

    MU Xuan. Research on diameter and position measurement of aero-engine turbine blade film holes [D]. Dalian: Dalian University of Technology, 2018.
    [8] 李俊烨, 朱旭, 杨兆军, 等. 固液两相磨料流的微小孔精密研抛行为 [J]. 吉林大学学报,2020,50(3):903-913.

    LI Junye, ZHU Xu, YANG Zhaojun, et al. Fine-hole precision polishing behavior of solid-liquid two-phase abrasive flow [J]. Journal of Jilin University,2020,50(3):903-913.
    [9] 张宇超, 董志国, 雷鸿博, 等. 超声振动辅助软性磨料流喷孔光整加工研究 [J]. 组合机床与自动化加工技术,2021(7):165-169. doi: 10.13462/j.cnki.mmtamt.2021.07.038

    ZHANG Yuchao, DONG Zhiguo, LEI Hongbo, et al. Research on soft abrasive jet finishing assisted by ultrasonic vibration [J]. Modular Machine Tool & Automatic Manufacturing Technique,2021(7):165-169. doi: 10.13462/j.cnki.mmtamt.2021.07.038
    [10] 计时鸣, 李琛, 谭大鹏, 等. 基于Preston方程的软性磨粒流加工特性 [J]. 机械工程学报,2011,47(17):156-163. doi: 10.3901/JME.2011.17.156

    JI Shiming, LI Chen, TAN Dapeng, et al. Machining characteristics of soft abrasive flow based on Preston equation [J]. Journal of mechanical engineering,2011,47(17):156-163. doi: 10.3901/JME.2011.17.156
    [11] FU Y, GAO H, YAN Q, et al. An efficient approach to improving the finishing properties of abrasive flow machining with the analyses of initial surface texture of workpiece [J]. International Journal of Advanced Manufacturing Technology,2020,107(3):2417-2432.
    [12] 汤勇, 陈澄洲, 张发英. 磨料流加工压力特性对加工表面粗糙度的影响 [J]. 华南理工大学学报(自然科学版),1997,25(5):25-28.

    TANG Yong, CHEN Chengzhou, ZHANG Faying. Influence of abrasive flow machining pressure characteristics on machined surface roughness [J]. Journal of South China University of Technology (Natural Science Edition),1997,25(5):25-28.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  92
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-18
  • 修回日期:  2022-07-22
  • 录用日期:  2022-08-03
  • 刊出日期:  2023-02-20

目录

    /

    返回文章
    返回