CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陶瓷材料的DIW工艺在陶瓷基金刚石工具中应用的关键技术问题

王娅妮 张绍和 张谦 孔祥旺 何焘 赵东鹏 高华

王娅妮, 张绍和, 张谦, 孔祥旺, 何焘, 赵东鹏, 高华. 陶瓷材料的DIW工艺在陶瓷基金刚石工具中应用的关键技术问题[J]. 金刚石与磨料磨具工程, 2023, 43(1): 49-58. doi: 10.13394/j.cnki.jgszz.2022.0082
引用本文: 王娅妮, 张绍和, 张谦, 孔祥旺, 何焘, 赵东鹏, 高华. 陶瓷材料的DIW工艺在陶瓷基金刚石工具中应用的关键技术问题[J]. 金刚石与磨料磨具工程, 2023, 43(1): 49-58. doi: 10.13394/j.cnki.jgszz.2022.0082
WANG Yani, ZHANG Shaohe, ZHANG Qian, KONG Xiangwang, HE Tao, ZHAO Dongpeng, GAO Hua. Key technical problems of the application of DIW process of ceramic materials  in ceramic-based diamond tools[J]. Diamond & Abrasives Engineering, 2023, 43(1): 49-58. doi: 10.13394/j.cnki.jgszz.2022.0082
Citation: WANG Yani, ZHANG Shaohe, ZHANG Qian, KONG Xiangwang, HE Tao, ZHAO Dongpeng, GAO Hua. Key technical problems of the application of DIW process of ceramic materials  in ceramic-based diamond tools[J]. Diamond & Abrasives Engineering, 2023, 43(1): 49-58. doi: 10.13394/j.cnki.jgszz.2022.0082

陶瓷材料的DIW工艺在陶瓷基金刚石工具中应用的关键技术问题

doi: 10.13394/j.cnki.jgszz.2022.0082
基金项目: 国家重点研发计划项目(2021YFB3701804); 国家自然科学基金面上项目(41872186); 湖南省自然科学基金面上项目(2022JJ30709)。
详细信息
    通讯作者:

    张绍和,男,1967年生,教授。主要研究方向:地质工程智能化技术、岩土钻掘工程理论与技术。E-mail:zhangshaohe@163.com

  • 中图分类号: TG74; TQ164

Key technical problems of the application of DIW process of ceramic materials  in ceramic-based diamond tools

  • 摘要:

    浆料的直写成形技术(DIW)是一种基于浆料挤出的3D打印技术,其具有能耗低、成本低、打印速度快、无结构设计限制等优点。在概述DIW 技术应用于陶瓷基金刚石工具优势的基础上,对其应用过程中的原料选择、浆料制备、打印适性及脱脂、烧结工艺等关键步骤进行探讨,并指出在浆料制备环节中需要重点关注的粉体团聚问题。同时,分析一些DIW 制造工艺的研究实例。最后,指出DIW工艺制造陶瓷基金刚石工具应解决的关键问题。

     

  • 图  1  常见的3D打印技术工作原理

    Figure  1.  Working principles of common 3D printing technologies

    图  2  DIW工作原理图

    Figure  2.  Working principle diagram of DIW

    图  3  浆料黏度与剪切速率的函数关系

    Figure  3.  Function relationship of slurry viscosity and shear rate

    图  4  金刚石工具制造流程

    Figure  4.  Diamond tool manufacturing flow chart

    图  5  Al2O3和 SiC零件的断裂表面和抛光显微组织显示的孔隙率和晶粒结构

    Figure  5.  Porosities and grain structures of fractured surfaces and polished microstructures of Al2O3 and SiC parts

  • [1] 段端志. 磨料预钎焊金刚石工具的基础研究 [D]. 南京: 南京航空航天大学, 2016.

    DUAN Duanzhi. Basic research on abrasive pre-brazed diamond tools [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
    [2] 张云鹤, 黄景銮, 宋运运, 等. 3D打印金刚石工具的研究进展 [J]. 金刚石与磨料磨具工程,2021,41(3):40-47.

    ZHANG Yunhe, HUANG Jingluan, SONG Yunyun, et al. Research progress of 3D printing diamond tools [J]. Diamond & Abrasives Engineering,2021,41(3):40-47.
    [3] 张绍和. 金刚石与金刚石工具 [M]. 长沙: 中南大学出版社, 2005.

    ZHANG Shaohe. Diamond and diamond tools [M]. Changsha: Central South University Press, 2005.
    [4] 范波, 徐帅. 金刚石磨料表面多孔结构的制备 [J]. 金刚石与磨料磨具工程,2017,37(6):41-44.

    FAN Bo, XU Shuai. Fabrication of porous structure on diamond abrasive surface [J]. Diamond & Abrasives Engineering,2017,37(6):41-44.
    [5] 陆静, 王艳辉, 黄景銮. 一种蜂窝状金刚石工具的浆料直写成型方法: CN112692956A [P]. 2021-04-23.

    LU Jing, WANG Yanhui, HUANG Jingluan. A kind of direct ink writing molding method of honeycomb diamond tool: CN112692956A [P]. 2021-04-23.
    [6] 张津津, 朱梦梦, 李慧, 等. 水固化3D打印方法及装置: CN110154387B [P]. 2020-10-27.

    ZAHNG Jinjin, ZHU Mengmeng, LI Hui, et al. Water curing 3D printing method and device: CN110154387B [P]. 2020-10-27.
    [7] CESARANO J, SEGALMAN R, CALVERT P. Robocasting provides moldless fabrication from slurry deposition [J]. Ceramic Industry,1998,148(4):94-96.
    [8] 张绍和, 苏舟, 刘磊磊, 等. SLS和FDMS制造超薄金刚石锯片对比研究 [J]. 金刚石与磨料磨具工程,2021,41(1):38-43.

    ZHANG Shaohe, SU Zhou, LIU Leilei, et al. Comparative study on ultra-thin diamond sawblades made by SLS and FDMS [J]. Diamond & Abrasives Engineering,2021,41(1):38-43.
    [9] KULKARMI A, SORARU G D, PEARCE J M. Polymer-derived SiOC replica of material extrusion-based 3-D printed plastics [J]. Additive Manufacturing,2020,32:100988. doi: 10.1016/j.addma.2019.100988
    [10] DEL-MAZO-BARBARA L, GINEBRA M P. Rheological characterisation of ceramic inks for 3D direct ink writing: A review [J]. Journal of the European Ceramic Society,2021,41(16):18-33. doi: 10.1016/j.jeurceramsoc.2021.08.031
    [11] 赵洪炯, 董明成. 用于直写成型的SiC陶瓷浆料制备研究 [J]. 轻纺工业与技术,2020,49(12):11-12. doi: 10.3969/j.issn.2095-0101.2020.12.005

    ZHAO Hongjiong, DONG Mingcheng. Study on preparation of SiC ceramic slurry for direct ink writing [J]. Textile Industry and Technology,2020,49(12):11-12. doi: 10.3969/j.issn.2095-0101.2020.12.005
    [12] SHAHZAD A, LAZOGLU I. Direct ink writing (DIW) of structural and functional ceramics: Recent achievements and future challenges [J]. Composites Part B: Engineering,2021,225:109249. doi: 10.1016/j.compositesb.2021.109249
    [13] 李亚运, 司云晖, 熊信柏, 等. 陶瓷3D打印技术的研究与进展 [J]. 硅酸盐学报,2017,45(6):793-805.

    LI Yayun, SI Yunhui, XIONG Xinbo, et al. Research and progress on three dimensional printing of ceramic materials [J]. Journal of the Chinese Ceramic Society,2017,45(6):793-805.
    [14] 林克英. 超细金刚石微粉的提纯及分级工艺研究 [D]. 武汉: 中国地质大学, 2006.

    LIN Keying. Research on purification and classification technology of ultrafine diamond powder [D]. Wuhan: China University of Geosciences, 2006.
    [15] CHEN Z, LI Z, LI J, et al. 3D printing of ceramics: A review [J]. Journal of the European Ceramic Society,2019,39(4):661-687. doi: 10.1016/j.jeurceramsoc.2018.11.013
    [16] JACKSON S, DICKENS T. Rheological and structural characterization of 3D-printable polymer electrolyte inks [J]. Polymer Testing,2021,104:107377. doi: 10.1016/j.polymertesting.2021.107377
    [17] 刘英莉, 朱文超, 邹志云, 等. 超细粉体团聚性表征技术研究 [J]. 中国粉体技术,2020,26(6):45-50.

    LIU Yingli, ZHU Wenchao, ZOU Zhiyun, et al. Research on agglomeration characterization technology of ultrafine powder [J]. China Powder Science and Technology,2020,26(6):45-50.
    [18] 刘大成. 粉体团聚及解决措施 [J]. 中国陶瓷,2000,36(6):33-35. doi: 10.3969/j.issn.1001-9642.2000.06.014

    LIU Dacheng. Flour agglomerate and solving measures for it [J]. China Ceramics,2000,36(6):33-35. doi: 10.3969/j.issn.1001-9642.2000.06.014
    [19] 纪宏超, 张雪静, 裴未迟, 等. 陶瓷3D打印技术及材料研究进展 [J]. 材料工程,2018,46(7):19-28. doi: 10.11868/j.issn.1001-4381.2018.000084

    JI Hongchao, ZHANG Xuejing, PEI Weichi, et al. Research progress in ceramic 3D printing technology and material development [J]. Journal of Materials Engineering,2018,46(7):19-28. doi: 10.11868/j.issn.1001-4381.2018.000084
    [20] PINARGOTE N W S, SMIRNOV A, NIKITA P, et al. Direct ink writing technology (3D printing) of graphene-based ceramic nanocomposites: A review [J]. Nanomaterials,2020,10(7):1300. doi: 10.3390/nano10071300
    [21] SAADI M, MAGUIRE A, POTTACKAL N T, et al. Direct ink writing: A 3D printing technology for diverse materials [J]. Advanced Materials,2022:2108855.
    [22] RUESCHHOFF L M, TRICE R W, YOUNGBLOOD J P. Near-net shaping of silicon nitride via aqueous room-temperature injection molding and pressureless sintering [J]. Ceramics International,2017,43(14):10791-10798. doi: 10.1016/j.ceramint.2017.05.097
    [23] HUANG J, LU J, WANG Y, et al. Fabrication of porous structure vitrified bond diamond grinding wheel via direct ink writing [J]. Ceramics International,2021,47(24):34050-34058. doi: 10.1016/j.ceramint.2021.08.314
    [24] XIA Y, LU Z, CAO J, et al. Microstructure and mechanical property of Cf/SiC core/shell composite fabricated by direct ink writing [J]. Scripta Materialia,2019,165:84-88. doi: 10.1016/j.scriptamat.2019.02.016
    [25] XIA X, DUAN G. Effect of solid loading on properties of zirconia ceramic by direct ink writing [J]. Materials Research Express,2021,8(1):015403. doi: 10.1088/2053-1591/abd866
    [26] ROSENTAL T, MAGDASSI S. A new approach to 3D printing dense ceramics by ceramic precursor binders [J]. Advanced Engineering Materials,2019,21(10):1900604. doi: 10.1002/adem.201900604
    [27] YU T, ZHANG Z, LIU Q, et al. Extrusion-based additive manufacturing of yttria-partially-stabilized zirconia ceramics [J]. Ceramics International,2020,46(4):5020-5027. doi: 10.1016/j.ceramint.2019.10.245
    [28] FEILDEN E, BLANCA E G T, GIULIANI F, et al. Robocasting of structural ceramic parts with hydrogel inks [J]. Journal of the European Ceramic Society,2016,36(10):2525-2533. doi: 10.1016/j.jeurceramsoc.2016.03.001
    [29] M′BARKI A, BOCQUET L, STEVENSON A. Linking rheology and printability for dense and strong ceramics by direct ink writing [J]. Scientific Reports,2017,7(1):1-10. doi: 10.1038/s41598-016-0028-x
    [30] SMAY J E, CESARANO III J, TUTTLE B A, et al. Directed colloidal assembly of linear and annular lead zirconate titanate arrays [J]. Journal of the American Ceramic Society,2004,87(2):293-295. doi: 10.1111/j.1551-2916.2004.00293.x
    [31] LI Q, LI B, ZHOU J, et al. Robocasting: A novel avenue for engineering complex 3D structures [J]. Journal of Inorganic Materials,2005,20(1):13-20.
    [32] MARCHI C S, KOUZELI M, RAO R, et al. Alumina–aluminum interpenetrating-phase composites with three-dimensional periodic architecture [J]. Scripta Materialia,2003,49(9):861-866. doi: 10.1016/S1359-6462(03)00441-X
    [33] STUECKER J N, CESARANO III J, HIRSCHFELD D A. Control of the viscous behavior of highly concentrated mullite suspensions for robocasting [J]. Journal of Materials Processing Technology,2003,142(2):318-325. doi: 10.1016/S0924-0136(03)00586-7
    [34] CAI K, ROMAN-MANSO B, SMAY J E, et al. Geometrically complex silicon carbide structures fabricated by robocasting [J]. Journal of the American Ceramic Society,2012,95(8):2660-2666. doi: 10.1111/j.1551-2916.2012.05276.x
    [35] HANSON SHEPHERD J N, PARKER S T, SHEPHERD R F, et al. 3D microperiodic hydrogel scaffolds for robust neuronal cultures [J]. Advanced Functional Materials,2011,21(1):47-54. doi: 10.1002/adfm.201001746
  • 加载中
图(5)
计量
  • 文章访问数:  465
  • HTML全文浏览量:  159
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 修回日期:  2022-11-02
  • 录用日期:  2022-10-09
  • 刊出日期:  2023-02-20

目录

    /

    返回文章
    返回