CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GFRP低频轴向振动制孔的钻削力特性和套料钻磨损分析

董香龙 郑雷 韦文东 孙晓晗 刘子文 孙衍涛 何智伟

董香龙, 郑雷, 韦文东, 孙晓晗, 刘子文, 孙衍涛, 何智伟. GFRP低频轴向振动制孔的钻削力特性和套料钻磨损分析[J]. 金刚石与磨料磨具工程, 2023, 43(1): 82-89. doi: 10.13394/j.cnki.jgszz.2022.0053
引用本文: 董香龙, 郑雷, 韦文东, 孙晓晗, 刘子文, 孙衍涛, 何智伟. GFRP低频轴向振动制孔的钻削力特性和套料钻磨损分析[J]. 金刚石与磨料磨具工程, 2023, 43(1): 82-89. doi: 10.13394/j.cnki.jgszz.2022.0053
DONG Xianglong, ZHENG Lei, WEI Wendong, SUN Xiaohan, LIU Ziwen, SUN Yantao, HE Zhiwei. Analysis of drilling force characteristics and trepanning tool wear during GFRP low frequency axial vibration drilling hole[J]. Diamond & Abrasives Engineering, 2023, 43(1): 82-89. doi: 10.13394/j.cnki.jgszz.2022.0053
Citation: DONG Xianglong, ZHENG Lei, WEI Wendong, SUN Xiaohan, LIU Ziwen, SUN Yantao, HE Zhiwei. Analysis of drilling force characteristics and trepanning tool wear during GFRP low frequency axial vibration drilling hole[J]. Diamond & Abrasives Engineering, 2023, 43(1): 82-89. doi: 10.13394/j.cnki.jgszz.2022.0053

GFRP低频轴向振动制孔的钻削力特性和套料钻磨损分析

doi: 10.13394/j.cnki.jgszz.2022.0053
基金项目: 国家自然科学基金(51575470); 江苏省自然科学基金(BK20201474)。
详细信息
    作者简介:

    董香龙,男,1988年生,硕士、实验师。主要研究方向:先进制造技术及装备、机床动力学。E-mail:dongxianglong407@163.com

    通讯作者:

    郑雷,男,1976年生,博士、教授、硕士生导师。主要研究方向:高效精密加工技术、先进制造技术及装备。E-mail:alei611@163.com

  • 中图分类号: TG58; TG71; TQ164

Analysis of drilling force characteristics and trepanning tool wear during GFRP low frequency axial vibration drilling hole

  • 摘要:

    GFRP的套孔钻削过程中极易产生分层、撕裂等加工损伤,其与轴向钻削力直接相关。为提高GFRP的制孔质量,采用新型金刚石薄壁套料钻,结合低频轴向振动加工技术,建立单颗磨粒的运动学模型和动力学模型,试验研究GFRP制孔中的轴向力变化规律,并对套料钻的烧焦概率、自动落料率进行分析。结果表明:对比常规钻削,低频振动钻削时的瞬时进给量和轴向力比常规钻削时的大,且随着振幅的增加,轴向力也随之增大;低频振动钻削和常规钻削时的轴向力皆随进给速度的增加而增大,随主轴转速的升高而降低。同时,低频振动钻削时磨粒间断性地参与钻削,大大降低了套料钻的烧焦概率,提高了其自动落料率,自动落料率高达88.24%,可实现GFRP的连续批量制孔。

     

  • 图  1  低频轴向振动加工示意图

    Figure  1.  Schematic diagram of low-frequency axial vibration machining

    图  2  低频轴向振动刀柄的运动学展开示意图

    Figure  2.  Kinematic unfolding diagram of low-frequency axial vibration tool holder

    图  3  单颗磨粒的轨迹

    Figure  3.  Trajectory of single abrasive particle

    图  4  低频振动系统单自由度动力学模型

    Figure  4.  Single-degree-of-freedom dynamic model of low-frequency axial vibration

    图  5  GFRP的钻削试验装置

    Figure  5.  Drilling test device of GFRP

    图  6  低频轴向振动钻削时的轴向力采集

    Figure  6.  Axial force acquisition during low frequency axial vibration drilling

    图  7  新型薄壁金刚石套料钻

    Figure  7.  New thin-wall diamond trepanning tool

    图  8  振幅对轴向钻削力的影响

    Figure  8.  Influences of amplitudes on axial drilling forces

    图  9  进给速度对轴向力的影响

    Figure  9.  Influences of feed speeds on axial drilling forces

    图  10  主轴转速对轴向力的影响

    Figure  10.  Influences of rotational speeds on axial forces

    图  11  套料钻的工作部形貌图

    Figure  11.  Profile of working part of trepanning tool

    表  1  GFRP孔加工试验参数

    Table  1.   GFRP hole processing test parameters

    刀具及
    条件编号
    孔加工方法主轴转速
    n1 / (r·min−1)
    进给速度
    vf / (mm·min−1)
    振幅
    A / mm
    1#低频轴向振动3 38012.50.015,0.040
    0.065,0.090
    常规0
    2#低频轴向振动3 38010.0,12.5,
    15.6,19.6
    0.040
    常规0
    3#低频轴向振动3 020,3 380,
    3 790,4 250
    12.50.040
    常规0
    下载: 导出CSV

    表  2  金刚石套料钻工况统计表

    Table  2.   Working condition statistics table of diamond trepanning tool

    加工
    方式
    试验
    次数
    套料钻
    数量
    烧焦
    次数
    R1 / %未自动落
    料次数
    自动落料率
    R2 / %
    常规钻削1221*8.33375.00
    振动钻削3410488.24
    *注:常规钻削时,第6次钻孔时套料钻烧焦,重新更换新套料钻继续进行钻削试验。
    下载: 导出CSV
  • [1] 董彬, 魏汝斌, 宗昊, 等. 陶瓷/纤维复合装甲抗弹吸能机理及影响因素 [J]. 兵器材料科学与工程,2020,43(5):128-136.

    DONG Bin, WEI Rubin, ZONG Hao, et al. The energy absorption mechanism and influential factors of ceramic/fiber reinforced polymer composite hybrid armour [J]. Ordnance Material Science and Engineering,2020,43(5):128-136.
    [2] 韦文东. Al2O3/GFRP 层叠复合构件的低频振动套孔加工工艺研究 [D]. 南京: 南京工程学院, 2019.

    WEI Wendong. Research on technology of drilling Al2O3/GFRP laminated materials under low frequency vibration processing [D]. Nanjing: Nanjing Institute of Technology, 2019.
    [3] 丁凯, 李奇林, 苏宏华, 等. 硬脆材料超声辅助磨削技术研究现状及展望 [J]. 金刚石与磨料磨具工程,2020,40(1):5-14.

    DING Kai, LI Qilin, SU Honghua, et al. Study status and future prospects on ultrasonic assisted grinding of hard and brittle materials [J]. Diamond & Abrasives Engineering,2020,40(1):5-14.
    [4] 陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复合材料制孔技术研究现状与展望 [J]. 复合材料学报,2015,32(2):301-316.

    CHEN Yan, GE Ende, FU Yucan, et al. Review and prospect of drilling technologies for carbon fiber reinforced polymer [J]. Acta Materiae Compositae Sinica,2015,32(2):301-316.
    [5] 杨宇辉, 陈海彬, 马文举, 等. 氧化锆陶瓷旋转超声加工脆塑转变特性研究 [J]. 表面技术,2020,49(4):90-97. doi: 10.16490/j.cnki.issn.1001-3660.2020.04.011

    YANG Yuhui, CHEN Haibin, MA Wenju, et al. Study of the characteristics of brittle-ductile transition in rotary ultrasonic machining of zirconia ceramics [J]. Surface Technology,2020,49(4):90-97. doi: 10.16490/j.cnki.issn.1001-3660.2020.04.011
    [6] WANG J J, ZHANG J F, FENG P F, et al. Feasibility study of longitudinal–torsional-coupled rotary ultrasonic machining of brittle material [J]. Journal of Manufacturing Science and Engineering,2018,140(5):1-11.
    [7] 邵振宇, 姜兴刚, 张德远, 等. CFRP旋转超声辅助钻削的缺陷抑制机理及实验研究 [J]. 北京航空航天大学学报,2019,45(8):1613-1621.

    SHAO Zhenyu, JIANG Xinggang, ZHANG Deyuan, et al. Defect suppression mechanism and experimental study on rotary ultrasonic-assisted drilling of CFRP [J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(8):1613-1621.
    [8] 王东, 焦锋, 张世杰, 等. 纵向超声振动钻削CFRP/钛合金叠层材料的动态冲击效应分析 [J]. 振动与冲击,2020,39(17):47-56.

    WANG Dong, JIAO Feng, ZHANG Shijie, et al. Dynamic impact effect analysis for longitudinalultrasonic vibration drilling of CFRP/titanium alloy laminated plate [J]. Journal of Vibration and Shock,2020,39(17):47-56.
    [9] GENG D X, ZHANG D Y, XU Y G, et al. Comparison of drill wear mechanism between rotary ultrasonic elliptical machining and conventional drilling of CFRP [J]. Journal of Reinforced Plastics and Composites,2014,33(9):797-809. doi: 10.1177/0731684413518619
    [10] ZHENG L, WEI W D, FENG Y, et al. Drilling machinability of engineering ceramics under low-frequency axial vibration processing by sintering/brazing composite diamond trepanning bit [J]. Ceramics International,2019,45(9):11905-11911. doi: 10.1016/j.ceramint.2019.03.077
    [11] 李哲, 王新, 张毅, 等. CFRP超声振动套磨钻孔高效排屑机理和实验 [J]. 北京航空航天大学学报,2020,46(1):229-240.

    LI Zhe, WANG Xin, ZHANG Yi, et al. Mechanism and experiment on high-efficiency chip removal in ultrasonic vibration core drilling of CFRP [J]. Journal of Beijing University of Aeronautics and Astronautics,2020,46(1):229-240.
    [12] LADONNE M, CHERIF M, LANDON Y, et al. Modelling the vibration-assisted drilling process: Identification of influential phenomena [J]. International Journal of Advanced Manufacturing Technology,2015,81(9/10/11/12):1657-1666. doi: 10.1007/s00170-015-7315-8
    [13] ZHENG L, ZHANG C, DONG X L, et al. Study on hole machining for the constant feed rate of Al2O3 engineering ceramics through low-frequency axial vibration [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2019,234(6/7):971-979.
    [14] 宋中权, 程寓, 高超, 等. 玻璃纤维增强复合材料钻削试验研究 [J]. 中国机械工程,2011,22(8):883-886.

    SONG Zhongquan, CHENG Yu, GAO Chao, et al. Experimental study on drilling glass fiber reinforced plastics [J]. China Mechanical Engineering,2011,22(8):883-886.
    [15] ZHENG L, QIN P, LV D M, et al. Low-frequency axial vibration drilling of Al2O3/GFRP laminated composite plate by diamond trepanning bit [J]. Composite Structures,2020,245:1-9.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  72
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 修回日期:  2022-08-08
  • 录用日期:  2022-08-11
  • 刊出日期:  2023-02-20

目录

    /

    返回文章
    返回