CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiCp/Al复合材料超声振动研磨工艺研究

孙宝玉 付兴豹 袁旭 谷岩

孙宝玉, 付兴豹, 袁旭, 谷岩. SiCp/Al复合材料超声振动研磨工艺研究[J]. 金刚石与磨料磨具工程, 2022, 42(6): 713-719. doi: 10.13394/j.cnki.jgszz.2022.0016
引用本文: 孙宝玉, 付兴豹, 袁旭, 谷岩. SiCp/Al复合材料超声振动研磨工艺研究[J]. 金刚石与磨料磨具工程, 2022, 42(6): 713-719. doi: 10.13394/j.cnki.jgszz.2022.0016
SUN Baoyu, FU Xingbao, YUAN Xu, GU Yan. Research on ultrasonic vibration grinding technology of SiCp/Al composites[J]. Diamond & Abrasives Engineering, 2022, 42(6): 713-719. doi: 10.13394/j.cnki.jgszz.2022.0016
Citation: SUN Baoyu, FU Xingbao, YUAN Xu, GU Yan. Research on ultrasonic vibration grinding technology of SiCp/Al composites[J]. Diamond & Abrasives Engineering, 2022, 42(6): 713-719. doi: 10.13394/j.cnki.jgszz.2022.0016

SiCp/Al复合材料超声振动研磨工艺研究

doi: 10.13394/j.cnki.jgszz.2022.0016
详细信息
    作者简介:

    孙宝玉,女,1971年生,博士、教授。主要研究方向:精密机构微驱动技术。E-mail:499517154@qq.com

    通讯作者:

    谷岩,男,1980年生,博士、副教授。主要研究方向:微纳制造与精密加工。E-mail: guyan@ccut.edu.cn

  • 中图分类号: TG580;TG74;TQ164

Research on ultrasonic vibration grinding technology of SiCp/Al composites

  • 摘要: 针对SiCp/Al材料传统研磨方法加工困难,研磨工具磨损快,加工后难以获得高质量表面等问题,采用超声振动研磨加工方法可以显著改善其加工效果。通过对单磨粒的超声振动轨迹进行分析,得出其运动轨迹为空间椭圆形,可实现磨粒与工件间歇性的接触加工;采用树脂结合剂金刚石磨头对SiC体积分数为40%的SiCp/Al材料进行超声振动研磨加工试验,在不同的主轴转速n、进给速度v和研磨深度ap以及磨料粒度d下,利用单因素试验法对工件进行研磨,检测加工后工件表面粗糙度,得出各工艺参数对工件表面粗糙度Sa值的影响规律。结果表明:超声振动研磨后的工件表面粗糙度Sa值相较于普通研磨后的79 nm下降为45 nm;超声振动研磨后工件表面粗糙度随n的增大先减小后增大,转速为1 800 r/min时,粗糙度值最小;工件表面粗糙度随vap的增大而增大,随着d的减小而减小。并得出试验参数内的最优参数组合为:n=1 800 r/min,v=5 mm/min,ap=1 μm,d=4.5 μm。

     

  • 图  1  超声振动装置结构示意图

    Figure  1.  Schematic diagram of ultrasonic vibration device

    图  2  超声振动研磨原理示意图

    Figure  2.  Schematic diagram of ultrasonic vibration grinding principle

    图  3  单磨粒研磨轨迹示意图

    Figure  3.  Schematic diagram of single abrasive trajectory

    图  4  磨粒运动轨迹

    Figure  4.  Abrasive particle trajectory

    图  5  试验系统及检测设备

    Figure  5.  Experimental system and detection equipment

    图  6  工件表面形貌

    Figure  6.  Surface topography of workpiece

    图  7  表面粗糙度随主轴转速的变化

    Figure  7.  Variation of surface roughness with spindle speed

    图  8  表面粗糙度随进给速度的变化

    Figure  8.  Change of surface roughness with feed rate

    图  9  表面粗糙度随研磨深度的变化

    Figure  9.  Change of surface roughness with lapping depth

    图  10  表面粗糙度随磨料粒度的变化

    Figure  10.  Change of surface roughness with abrasive grain size

    表  1  超声振动试验参数

    Table  1.   Experimental parameters of ultrasonic vibration

    参数 参数值
    主轴转速n / (r·min−1 600,1 200,1 800,2 400,3 000
    进给速度v / (mm·min−1 5,10,20,40,60
    研磨深度ap / μm 1,2,3,4
    磨料粒度d / μm 4.5,5.5,6.5
    频率f / kZ 20
    z方向振幅A / μm 10.4
    x方向振幅A / μm 4.5
    下载: 导出CSV
  • [1] 王兴文. 超声激励下的SiCp/AL铣削机理及表面质量研究 [D]. 太原: 中北大学, 2018.

    WANG Xingwen. SiCp/Al milling mechanism and surface quality under ultrasonic excitation [D]. Taiyuan: North University of China, 2018.
    [2] 王进峰, 储开宇, 赵久兰, 等. SiCp/Al复合材料切削仿真及实验研究 [J]. 人工晶体学报,2016,45(7):1756-1764. doi: 10.3969/j.issn.1000-985X.2016.07.008

    WANG Jinfeng, CHU Kaiyu, ZHAO Jiulan, et al. Study on cutting simulation and experiment of SiCp/Al composites [J]. Journal of Synthetic Crystals,2016,45(7):1756-1764. doi: 10.3969/j.issn.1000-985X.2016.07.008
    [3] GU P, ZHU C M, TAO Z, et al. A grinding force prediction model for SiCp/Al composite based on single-abrasive-grain grinding [J]. The International Journal of Advanced Manufacturing Technology,2020,109(5/6):1563-1581.
    [4] 程思扬, 曹琪, 包建勋, 等. 中高体积分数SiCp/Al复合材料研究进展 [J]. 中国光学,2019,12(05):1064-1075. doi: 10.3788/co.20191205.1064

    CHENG Siyang, CAO Qi, BAO Jianxun, et al. Research and development of medium/high volume fraction SiCp/Al composites [J]. Chinese Optics,2019,12(05):1064-1075. doi: 10.3788/co.20191205.1064
    [5] YIN G, GONG Y, LI Y, et al. Modeling and evaluation in grinding of SiCp/Al composites with single diamond grain [J]. International Journal of Mechanical Sciences,2019,163:105137. doi: 10.1016/j.ijmecsci.2019.105137
    [6] 王文博. SiCp/Al复合材料磨削加工表面缺陷检测技术研究 [D]. 哈尔滨: 哈尔滨工业大学, 2021.

    WANG Wenbo. Research on surface defect detection technology in grinding of SiCp/Al composites [D]. Harbin: Harbin Institute of Technology, 2021.
    [7] 潘丽娟. 切削高体积分数SiCp/Al复合材料表面粗糙度实验研究 [D]. 北京: 华北电力大学, 2021.

    PAN Lijuan. Experimental study on surface roughness of cutting SiCp/Al composites with high volume fraction [D]. Beijing: North China Electric Power University, 2021.
    [8] GU Y, DUAN X, LIN J, et al. Design, analysis, and testing of a novel 2-DOF vibration-assisted polishing device driven by the piezoelectric actuators [J]. The International Journal of Advanced Manufacturing Technology,2020,111(1):471-493.
    [9] DONG Z, ZHENG F, ZHU X, et al. Characterization of material removal in ultrasonically assisted grinding of SiCp/Al with high volume fraction [J]. The International Journal of Advanced Manufacturing Technology,2017,93(5):2827-2839.
    [10] ZHAO B, CHANG B, WANG X B, et al. System design and experimental research on ultrasonic assisted elliptical vibration grinding of Nano-ZrO2 ceramics [J]. Ceramics International,2019,45(18):24865-24877. doi: 10.1016/j.ceramint.2019.08.273
    [11] 许陆昕. 碳化硅陶瓷超声振动磨削表面质量研究 [D]. 苏州: 苏州科技大学, 2019.

    XU Luxin. Study on surface quality of ultrasonic vibration grinding of Sic ceramics [D]. Suzhou: Suzhou University of Science and Technology, 2019.
    [12] 郑伟, 刘岭, 张群, 等. SiCp/Al复合材料超声磨削表面缺陷形成机理仿真研究 [J]. 固体火箭技术,2019,42(6):793-800.

    ZHENG Wei, LIU Ling, ZHANG Qun, et al. Simulation of formation mechanism of machined surface defects in ultrasonic grinding of SiCp/Al composites [J]. Journal of Solid Rocket Technology,2019,42(6):793-800.
    [13] ZHA H, FENG P, ZHANG J, et al. Material removal mechanism in rotary ultrasonic machining of high-volume fraction SiCp/Al composites [J]. The International Journal of Advanced Manufacturing Technology,2018,97(5):2099-2109.
    [14] LEI X, XIANG D, PENG P, et al. Establishment of dynamic grinding force model for ultrasonic-assisted single abrasive high-speed grinding [J]. Journal of Materials Processing Technology,2022,300:117420. doi: 10.1016/j.jmatprotec.2021.117420
    [15] LU H, ZHU L, YANG Z, et al. Research on the generation mechanism and interference of surface texture in ultrasonic vibration assisted milling [J]. International Journal of Mechanical Sciences,2021,208:106681. doi: 10.1016/j.ijmecsci.2021.106681
    [16] 周岩. 碳化硅振动辅助抛光表面/亚表面损伤的研究 [D]. 长春: 长春工业大学, 2020.

    ZHOU Yan. Research on surface/subsurface damage of silicon carbide in vibration-assisted polishing [D]. Changchun: Changchun University of Technology, 2020.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  348
  • HTML全文浏览量:  81
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-04
  • 修回日期:  2022-06-23
  • 刊出日期:  2023-01-12

目录

    /

    返回文章
    返回