CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小直径磨棒磨削加工TiC颗粒增强钢基复合材料GT35

邵梦博 陈博川 高晓星 袁松梅

邵梦博, 陈博川, 高晓星, 袁松梅. 小直径磨棒磨削加工TiC颗粒增强钢基复合材料GT35[J]. 金刚石与磨料磨具工程, 2022, 42(3): 338-347. doi: 10.13394/j.cnki.jgszz.2021.3007
引用本文: 邵梦博, 陈博川, 高晓星, 袁松梅. 小直径磨棒磨削加工TiC颗粒增强钢基复合材料GT35[J]. 金刚石与磨料磨具工程, 2022, 42(3): 338-347. doi: 10.13394/j.cnki.jgszz.2021.3007
SHAO Mengbo, CHEN Bochuan, GAO Xiaoxing, YUAN Songmei. Grinding of TiC particle-reinforced steel-matrix composite GT35 with small diameter grinding rods[J]. Diamond & Abrasives Engineering, 2022, 42(3): 338-347. doi: 10.13394/j.cnki.jgszz.2021.3007
Citation: SHAO Mengbo, CHEN Bochuan, GAO Xiaoxing, YUAN Songmei. Grinding of TiC particle-reinforced steel-matrix composite GT35 with small diameter grinding rods[J]. Diamond & Abrasives Engineering, 2022, 42(3): 338-347. doi: 10.13394/j.cnki.jgszz.2021.3007

小直径磨棒磨削加工TiC颗粒增强钢基复合材料GT35

doi: 10.13394/j.cnki.jgszz.2021.3007
基金项目: 基础科研计划(JCKY2018601B201)。
详细信息
    通讯作者:

    袁松梅,女,1971年生,教授、博士生导师。主要研究方向:先进加工技术及装备、医工结合。E-mail:yuansm@buaa.edu.cn

  • 中图分类号: TG74; TG58; TQ164

Grinding of TiC particle-reinforced steel-matrix composite GT35 with small diameter grinding rods

  • 摘要: 为探究TiC颗粒增强钢基复合材料GT35合理的加工参数和冷却润滑条件,研究其对切削力、表面质量及刀具磨损的影响规律,采用小直径磨棒以侧面磨削方式开展试验。结果表明:干磨削会引起磨棒烧伤,极压磨削油的润滑效果优于水基合成磨削液的;磨棒在极压磨削油润滑下,磨削工件12 min后进入稳定磨损状态,其主要磨损形式为磨粒破碎、磨粒磨耗和磨粒脱落;主轴转速对切削力的影响大于进给速度的,且转速越高,切削力越小;工件表面粗糙度主要与磨棒磨粒出露高度的平整度有关,受加工参数的影响较小。用小直径磨棒磨削加工GT35材料时,应选择极压磨削油润滑,高主轴转速、中速进给的加工方式,以获得良好的刀具寿命、工件加工表面质量及适当的加工效率。

     

  • 图  1  GT35材料表面微观形貌

    Figure  1.  Surface micromorphology of GT35

    图  2  侧面磨削加工过程示意图

    Figure  2.  Diagram of the side grinding process

    图  3  试验系统设置图

    Figure  3.  Test system set-up diagram

    图  4  试验中所使用的磨棒和工件

    Figure  4.  Grinding rods and workpieces used in the tests

    图  5  切屑形貌及其附着在磨棒表面状态

    Figure  5.  Chip morphology and chip adhesion to grinding rod surface

    图  6  磨棒表面状态

    Figure  6.  Grinding rod surface condition

    图  7  水油接触角示意图

    Figure  7.  Water-oil contact angle diagram

    图  8  不同冷却方式下切削力变化图

    Figure  8.  Graph of cutting force variation with different cooling methods

    图  9  不同磨削液对加工表面质量的影响

    Figure  9.  Influence of different grinding fluids on the quality of the machined surface

    图  10  磨棒磨损状态曲线图

    Figure  10.  Grinding rod wear status graphs

    图  11  剧烈磨损阶段磨棒挠曲变形状态

    Figure  11.  Grinding rod flexural deformation in the severe wear phase

    图  12  金刚石磨粒破碎观测图

    Figure  12.  Diamond abrasive grain fracture observation diagram

    图  13  金刚石磨粒磨耗磨损观测图

    Figure  13.  Diamond abrasive wear observation diagram

    图  14  金刚石磨粒脱落观测图

    Figure  14.  Observation chart for diamond abrasive grain shedding

    图  15  试验中所采集的切削力

    Figure  15.  Cutting forces collected during the test

    图  16  磨棒几何尺寸对切削的影响

    Figure  16.  Influence of grinding rod geometry on cutting

    图  17  工艺参数对切削力的影响

    Figure  17.  Influence of process parameters on cutting forces

    图  18  工艺参数对表面质量的影响

    Figure  18.  Influence of process parameters on surface quality

    图  19  加工表面成型示意图

    Figure  19.  Schematic diagram of machining surface forming

    图  20  GT35加工后的表面形貌

    Figure  20.  Surface profile of GT35 after machining

    表  1  冷却润滑试验参数设置

    Table  1.   Cooling-lubrication test parameter setting

    参数取值
    主轴转速 n1 / (r·min−1) 15 000
    进给速度 vf / (mm·min−1) 30
    切削深度 ap / mm 3
    切削宽度 ae / mm 0.5
    重复试验次数 N 5
    下载: 导出CSV

    表  2  磨棒磨损试验参数设置

    Table  2.   Grinding rod wear test parameter setting

    参数取值
    主轴转速 n2 / (r·min−1) 25 000
    进给速度 vf / (mm·min−1) 10
    切削深度 ap / mm 3
    切削宽度 ae / mm 0.1
    下载: 导出CSV

    表  3  工艺试验参数设置

    Table  3.   Process test parameter setting

    试验参数试验设置
    主轴转速 n / (r·min−1)10 000,15 000,20 000,
    25 000
    进给速度 vf / (mm·min−1)10,18,26,34
    切削深度 ap / mm3
    切削宽度 ae / mm0.2
    下载: 导出CSV
  • [1] 刘舜尧, 张春友. GT35钢结硬质合金应用技术研究 [J]. 稀有金属与硬质合金,2001,29(2):25-29, 35. doi: 10.3969/j.issn.1004-0536.2001.02.007

    LIU Shunyao, ZHANG Chunyou. Study of applied techniques for GT35 steel-bonded carbides [J]. Rare Metals and Cemented Carbides,2001,29(2):25-29, 35. doi: 10.3969/j.issn.1004-0536.2001.02.007
    [2] ZHANG Z, YAO P, WANG J, et al. Analytical modeling of surface roughness in precision grinding of particle reinforced metal matrix composites considering nanomechanical response of material [J]. International Journal of Mechanical Sciences,2019,157/158:243-253. doi: 10.1016/j.ijmecsci.2019.04.047
    [3] 赵昌盛, 孔东祥. 钢结硬质合金模具热处理及应用 [J]. 模具制造,2006,6(10):80-82. doi: 10.3969/j.issn.1671-3508.2006.10.029

    ZHAO Changsheng, KONG Dongxiang. Heat treatment and application of steel structure cemented carbide die [J]. Die & Mould Manufacture,2006,6(10):80-82. doi: 10.3969/j.issn.1671-3508.2006.10.029
    [4] 王京锋, 刘景林, 闫亚超, 等. 半球形动压气体轴承陀螺电机设计及性能测试 [J]. 哈尔滨工业大学学报,2017,46(9):144-150. doi: 10.11918/j.issn.0367-6234.201701041

    WANG Jingfeng, LIU Jinglin, YAN Yachao, et al. Design and performance testing of hemispheric aerodynamic bearing gyro motor [J]. Journal of Harbin Institute of Technology,2017,46(9):144-150. doi: 10.11918/j.issn.0367-6234.201701041
    [5] 孟昊. 钢结硬质合金轴的精密点磨削工艺及砂轮在位修整方法研究 [D]. 山东: 山东大学, 2016.

    MENG Hao. Precision point grinding technology for steel bonded carbide axles and on-Machine conditioning of grinding wheel [D]. Shandong: Shandong University, 2016.
    [6] 吕程昶. 双转盘偏心槽精密球体研磨机理及其工艺研究 [D]. 南京: 南京航空航天大学, 2016.

    LU Chengchang. Research on ball lapping mechanism and technology using eccentric lapping method with two rotatable lapping plates [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
    [7] 于殿勇, 吴永孝. 钢结硬质合金的超精密磨削 [J]. 磨料磨具与磨削,1994(3):17-20.

    YU Dianyong, WU Yongxiao. Ultra-precision grinding of steel-jointed carbides [J]. Abrasives and Grinding,1994(3):17-20.
    [8] 王平, 唐一平, 张飞虎, 等. TiC系钢结硬质合金镜面微浮凸磨削机理的研究 [J]. 西安交通大学学报,1998(5):82-84, 88.

    WANG Ping, TANG Yiping, ZHANG Feihu. Mirror micro-relief grinding mechanism of TiC series steel-matrix carbide alloys [J]. Journal of Xi'an Jiaotong University,1998(5):82-84, 88.
    [9] 关佳亮, 仇忠臣, 赵增强, 等. 钢结硬质合金的ELID高效磨削试验研究 [J]. 机械设计与制造,2008(11):107-108. doi: 10.3969/j.issn.1001-3997.2008.11.042

    GUAN Jialiang, QIU Zhongchen, ZHAO Zengqiang, et al. Research on ELID grinding performance of steel bonded carbide [J]. Machinery Design & Manufacture,2008(11):107-108. doi: 10.3969/j.issn.1001-3997.2008.11.042
    [10] WANG Z, LIN T, HE X, et al. Fabrication and properties of the TiC reinforced high-strength steel matrix composite [J]. International Journal of Refractory Metals and Hard Materials, 2016, 58: 14-21.
    [11] 杨雄, 冉小丰, 帅玉妹, 等. GT35钢结硬质合金电火花加工工艺试验 [J]. 硬质合金,2009,26(4):236-239. doi: 10.3969/j.issn.1003-7292.2009.04.008

    YANG Xiong, RAN Xiaofeng, SHUAI Yumei, et al. Electrical discharge machining (EDM) technological test of GT35 steel-bonded carbide [J]. Cemented Carbide,2009,26(4):236-239. doi: 10.3969/j.issn.1003-7292.2009.04.008
    [12] BONNY K, DEBAETS P, OST W, et al. Influence of electrical discharge machining on the reciprocating sliding wear response of WC-Co cemented carbides [J]. Wear,2009,266(1/2):84-95. doi: 10.1016/j.wear.2008.05.009
    [13] KUMMEL J, BRAUN D, GIBMEIER J, et al. Study on micro texturing of uncoated cemented carbide cutting tools for wear improvement and built-up edge stabilisation [J]. Journal of Materials Processing Technology,2015,215:62-70. doi: 10.1016/j.jmatprotec.2014.07.032
    [14] KAWASEGI N, SUGIMORI H, MORIMOTO H, et al. Development of cutting tools with microscale and nanoscale textures to improve frictional behavior [J]. Precision Engineering,2009,33(3):248-254. doi: 10.1016/j.precisioneng.2008.07.005
    [15] 李克华, 熊华军, 郜永娟, 等. CBN磨料特性对树脂砂轮磨削性能的影响 [J]. 金刚石与磨料磨具工程,2017,37(3):19-22, 34.

    LI Kehua, XIONG Huajun, GAO Yongjuan, et al. Influence of different CBN grains on grinding performance of resin bonged CBN grinding wheel [J]. Diamond & Abrasives Engineering,2017,37(3):19-22, 34.
    [16] HEJAZI V, NOSONNVSKY M. Contact angle hysteresis in multiphase systems [J]. Colloid and Polymer Science,2013,291(2):329-338. doi: 10.1007/s00396-012-2838-0
    [17] ARUNACHALAM N, ANANDPS P, VIJAYARAGHAVAN L. Investigation of tribological conditions on grinding of bioceramic material using diamond grinding wheel under different cooling and lubrication environment [J]. Journal of Manufacturing Processes,2021,71:550-564. doi: 10.1016/j.jmapro.2021.09.004
    [18] 石淼淼. 切削中的摩擦与切削液 [M]. 北京: 中国铁道出版社, 1994.

    SHI Miaomiao. Friction in cutting and cutting fluids [M]. Beijing: China Rail Way Publishing House, 1994.
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  384
  • HTML全文浏览量:  164
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-23
  • 修回日期:  2022-01-28
  • 录用日期:  2022-05-01
  • 刊出日期:  2022-07-13

目录

    /

    返回文章
    返回