CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔CBN/Cu-Sn-Zn堆积磨料在钢轨打磨砂轮中的应用

姚煜 刘鹏展 邹文俊 彭进 简亚溜 韩平

姚煜, 刘鹏展, 邹文俊, 彭进, 简亚溜, 韩平. 多孔CBN/Cu-Sn-Zn堆积磨料在钢轨打磨砂轮中的应用[J]. 金刚石与磨料磨具工程, 2022, 42(1): 69-75. doi: 10.13394/j.cnki.jgszz.2021.0105
引用本文: 姚煜, 刘鹏展, 邹文俊, 彭进, 简亚溜, 韩平. 多孔CBN/Cu-Sn-Zn堆积磨料在钢轨打磨砂轮中的应用[J]. 金刚石与磨料磨具工程, 2022, 42(1): 69-75. doi: 10.13394/j.cnki.jgszz.2021.0105
YAO Yu, LIU Pengzhan, ZOU Wenjun, PENG Jin, JIAN Yaliu, HAN Ping. Application of porous CBN/Cu-Sn-Zn agglomerated abrasive in rail grinding wheel[J]. Diamond & Abrasives Engineering, 2022, 42(1): 69-75. doi: 10.13394/j.cnki.jgszz.2021.0105
Citation: YAO Yu, LIU Pengzhan, ZOU Wenjun, PENG Jin, JIAN Yaliu, HAN Ping. Application of porous CBN/Cu-Sn-Zn agglomerated abrasive in rail grinding wheel[J]. Diamond & Abrasives Engineering, 2022, 42(1): 69-75. doi: 10.13394/j.cnki.jgszz.2021.0105

多孔CBN/Cu-Sn-Zn堆积磨料在钢轨打磨砂轮中的应用

doi: 10.13394/j.cnki.jgszz.2021.0105
详细信息
    通讯作者:

    邹文俊,男,1961年生,教授、博士生导师。研究方向:高温树脂及树脂磨具制备。E-mail: wenjun_zou@haut.edu.cn

  • 中图分类号: TG73; TG58

Application of porous CBN/Cu-Sn-Zn agglomerated abrasive in rail grinding wheel

  • 摘要: 为提高钢轨打磨砂轮的磨削效率和使用寿命,制备一种表面多孔但内部紧实的CBN/Cu-Sn-Zn堆积磨料。讨论Cu-Sn-Zn结合剂的性能、孔隙结构对CBN堆积磨料的影响以及堆积磨料对砂轮结构强度的影响,并通过钢轨被动打磨试验,对堆积磨料添加前后砂轮的磨削效果进行评价。试验结果表明:最佳的多孔CBN堆积磨料试样弯曲强度为78.5 MPa,抗冲击强度为5.5 kJ/m2,表面孔隙率在30%~40%。磨料的复合使用可以有效地结合CBN高硬度与锆刚玉良好的冲击韧性的特点,添加体积分数为20%的堆积磨料提高钢轨打磨砂轮的打磨效率及打磨质量。

     

  • 图  1  多孔堆积磨料制备工艺流程

    Figure  1.  Process flow chart of porous stacked abrasive preparation

    图  2  钢轨打磨试验平台

    Figure  2.  Rail grinding experiment platform

    图  3  Zn质量分数对Cu-Sn结合剂力学性能的影响

    Figure  3.  Effect of Zn mass fraction on mechanical properties of Cu-Sn bond

    图  4  Zn质量分数对Cu-Sn结合剂硬度的影响

    Figure  4.  Effect of Zn mass fraction on hardness of Cu-Sn bond

    图  5  不同体积分数的造孔剂堆积磨料宏观形貌

    Figure  5.  Macro-morphologies of agglomerated abrasive with different volume concentrations of pore forming agent

    图  6  不同造孔剂体积分数下堆积磨料微观结构

    Figure  6.  Microstructures of agglomerated abrasive with different volume concentrations of pore forming agent

    图  7  造孔剂体积分数对堆积磨料试样力学性能的影响

    Figure  7.  Effect of pore forming agent volume concentrations on mechanical properties of agglomerated abrasive

    图  8  多孔CBN堆积磨料形貌

    Figure  8.  Porous CBN stacked abrasive morphology

    图  9  堆积磨料添加前后砂轮试样力学性能

    Figure  9.  Before and after adding agglomerated abrasive

    图  10  堆积磨料添加前后砂轮磨削效率和磨削比

    Figure  10.  Grinding efficiency and grinding ratio of grinding wheel

    图  11  钢轨打磨前后表面粗糙度

    Figure  11.  Surface roughness of rail before and after grinding

    图  12  磨削后砂轮中堆积磨料表面形貌

    Figure  12.  Surface morphology after grinding of agglomerated abrasive in grinding wheel

    表  1  打磨的钢轨工件元素成分

    Table  1.   Element compositions of the ground rail workpiece

    元素质量分数 ω / %
    C 0.650~0.760
    Si 0.150~0.580
    Mn 0.700~1.200
    P ≤ 0.035
    S ≤ 0.030
    V 0.030
    Nb ≤ 0.010
    Fe 余量
    下载: 导出CSV
  • [1] 龚继军, 郭猛刚, 侯博, 等. 钢轨打磨技术发展现状及打磨策略探讨 [J]. 机车电传动,2020(3):23-29, 34.

    GONG Jijun, GUO Menggang, HOU Bo, et al. Discussion on rail grinding technology development situation and grind strategies [J]. Electric Drive For Locomotives,2020(3):23-29, 34.
    [2] 樊文刚, 刘月明, 李建勇. 高速铁路钢轨打磨技术的发展现状与展望 [J]. 机械工程学报,2018,54(22):184-193. doi: 10.3901/JME.2018.22.184

    FAN Wengang, LIU Yueming, LI Jianyong. Development status and prospect of rail grinding technology for high speed railway [J]. Chinese Journal of Mechanical Engineering,2018,54(22):184-193. doi: 10.3901/JME.2018.22.184
    [3] 窦礼云. 新型复合砂轮高效打磨钢轨的性能研究 [D]. 南京: 南京航空航天大学, 2019.

    DOU Liyun. Study on the performance of high efficiency grinding for grinding rail with new composite grinding wheel [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
    [4] ZHANG W, ZHANG P, ZHANG J, et al. Probing the effect of abrasive grit size on rail grinding behaviors [J]. Journal of Manufacturing Processes,2020,53:388-395. doi: 10.1016/j.jmapro.2020.03.028
    [5] WANG R, ZHOU K, YANG J, et al. Effects of abrasive material and hardness of grinding wheel on rail grinding behaviors [J]. Wear,2020,454-455:203332. doi: 10.1016/j.wear.2020.203332
    [6] WU Y, SHEN M, QU M, et al. An experimental investigation on surface layer damage in high-efficiency and low-damage grinding of rail by slotted CBN grinding wheel [J]. The International Journal of Advanced Manufacturing Technology,2019,105(7/8):2833-2841. doi: 10.1007/s00170-019-04528-x
    [7] YUAN Y J, ZHANG W L, ZHANG P, et al. Porous grinding wheels toward alleviating the pre-fatigue and increasing the material removal efficiency for rail grinding [J]. Tribology International,2021,154:106692. doi: 10.1016/j.triboint.2020.106692
    [8] LIU P, ZOU W, PENG J, et al. Study on the effect of grinding pressure on material removal behavior performed on a self-designed passive grinding simulator [J]. Applied Sciences,2021,11(9)-4128. doi: 10.3390/app11094128
    [9] 李端. 高铁钢轨滚磨参数对磨削性能的影响研究 [D]. 郑州: 河南工业大学, 2020.

    LI Duan. Research on the influence of high speed rail rolling parameters on grinding performance [D]. Zhengzhou: Henan University of Technology, 2020.
    [10] 左宏森. 超硬材料烧结制品 [M]. 郑州: 郑州大学出版社, 2017.

    ZUO Hongsen. Super hard material sintered products [M]. Zhengzhou: Zhengzhou University Press, 2017.
    [11] 韩平. 金刚石珩磨抛光油石结合剂结构和性能及其珩磨应用 [D]. 秦皇岛: 燕山大学, 2013.

    HAN Ping. Study on the performance of high efficiency grinding for grinding rail with new composite grinding wheel [D]. Qinhuangdao: Yanshan University, 2013.
    [12] 赵亚庆, 何方. 孔隙率对多孔金属结合剂金刚石节块性能的影响 [J]. 超硬材料工程,2015,27(5):18-23. doi: 10.3969/j.issn.1673-1433.2015.05.004

    ZHAO Yaqing, HE Fang. Influence of porosity on the performances of porous metal-bond diamond blocks [J]. Super Hard Materials Engineering,2015,27(5):18-23. doi: 10.3969/j.issn.1673-1433.2015.05.004
    [13] ZHAO B, DING W, CHEN Z, et al. Pore structure design and grinding performance of porous metal-bonded CBN abrasive wheels fabricated by vacuum sintering [J]. Journal of Manufacturing Processes, 2019, 44: 125-132.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  85
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 修回日期:  2021-09-17
  • 录用日期:  2021-10-12
  • 网络出版日期:  2022-03-17
  • 刊出日期:  2022-03-17

目录

    /

    返回文章
    返回