Citation: | GU Zhibin, WANG Haoxiang, SONG Xin, KANG Renke, GAO Shang. Composition design and optimization of electrochemical mechanical polishing slurry for single crystal SiC[J]. Diamond & Abrasives Engineering, 2024, 44(5): 675-684. doi: 10.13394/j.cnki.jgszz.2023.0246 |
[1] |
MADAR R. Silicon carbide in contention [J]. Nature,2004,430(7003):974-975. doi: 10.1038/430974a
|
[2] |
EDDY C R, GASKILL D K. Silicon carbide as a platform for power electronics [J]. Science,2009,324(5933):1398-1400. doi: 10.1126/science.1168704
|
[3] |
MILLAN J, GODIGNON P, PERPINA X, et al. A survey of wide bandgap power semiconductor devices [J]. IEEE Transactions on Power Electronics,2014,29(5):2155-2163. doi: 10.1109/TPEL.2013.2268900
|
[4] |
ZOLPER J C. Emerging silicon carbide power electronics components: Applied power electronics conference and exposition [C]. Austin TX: Twentieth Annual IEEE, 2005.
|
[5] |
CVETKOVIĆ S, MORSBACH C, RISSING L. Ultra-precision dicing and wire sawing of silicon carbide (SiC) [J]. Microelectronic Engineering,2011,88(8):2500-2504. doi: 10.1016/j.mee.2011.02.026
|
[6] |
WANG H, GAO S, GUO X, et al. Atomic understanding of the plastic deformation mechanism of 4H-SiC under different grain depth-of-cut during nano-grinding [J]. Journal of Electronic Materials,2023,52(7):4865-4877. doi: 10.1007/s11664-023-10457-z
|
[7] |
GAO S, WANG H, HUANG H, et al. Molecular simulation of the plastic deformation and crack formation in single grit grinding of 4H-SiC single crystal [J]. International Journal of Mechanical Sciences,2023,247:108147. doi: 10.1016/j.ijmecsci.2023.108147
|
[8] |
YAN Q S, CHEN S K, PAN J S, et al. Surface and subsurface damage characteristics and material removal mechanism in 6H-SiC wafer grinding [J]. Materials Research Innovations,2014,18(sup2):S2.742-S2.747. doi: 10.1179/1432891714Z.000000000522
|
[9] |
HSIEH C H, CHANG C Y, HSIAO Y-K, et al. Recent advances in silicon carbide chemical mechanical polishing technologies [J]. Micromachines,2022,13(10):1752. doi: 10.3390/mi13101752
|
[10] |
WANG W, LIU W, SONG Z. Two-step chemical mechanical polishing of 4H-SiC(0001) wafer [J]. ECS Journal of Solid State Science and Technology,2021,10(7):74004. doi: 10.1149/2162-8777/ac12de
|
[11] |
KATO T, WADA K, HOZOMI E, et al. High throughput SiC wafer polishing with good surface morphology [J]. Materials Science Forum,2007(556/557):753-756. doi: 10.4028/www.scientific.net/MSF.556-557.753
|
[12] |
WANG X, CHEN J, BU Z, et al. Accelerated C-face polishing of silicon carbide by alkaline polishing slurries with Fe3O4 catalysts [J]. Journal of Environmental Chemical Engineering,2021,9(6):106863. doi: 10.1016/j.jece.2021.106863
|
[13] |
LU J, CHEN R, LIANG H, et al. The influence of concentration of hydroxyl radical on the chemical mechanical polishing of SiC wafer based on the fenton reaction [J]. Precision Engineering,2018,52:221-226. doi: 10.1016/j.precisioneng.2017.12.011
|
[14] |
YIN T, DOI T, KUROKAWA S, et al. Polishing characteristics of MnO2 polishing slurry on the Si-face of SiC wafer [J]. International Journal of Precision Engineering and Manufacturing,2018,19(12):1773-1780. doi: 10.1007/s12541-018-0206-9
|
[15] |
CHEN G, LI J, LONG J, et al. Surface modulation to enhance chemical mechanical polishing performance of sliced silicon carbide Si-face [J]. Applied Surface Science,2021,536:147963. doi: 10.1016/j.apsusc.2020.147963
|
[16] |
DENG J, LU J, YAN Q, et al. Enhancement mechanism of chemical mechanical polishing for single-crystal 6H-SiC based on electro-fenton reaction [J]. Diamond and Related Materials,2021,111:108147. doi: 10.1016/j.diamond.2020.108147
|
[17] |
YAMAMURA K, TAKIGUCHI T, UEDA M, et al. High-integrity finishing of 4H-SiC(0001) by plasma-assisted polishing [J]. Advanced Materials Research,2010(126/127/128):423-428. doi: 10.4028/www.scientific.net/AMR.126-128.423
|
[18] |
DENG H, TAKIGUCHI T, UEDA M, et al. Damage-free dry polishing of 4H-SiC combined with atmospheric-pressure water vapor plasma oxidation [J]. Japanese Journal of Applied Physics,2011,50(8):8JG05.1-8JG05.4. doi: 10.1143/JJAP.50.08JG05
|
[19] |
YAMAMURA K, TAKIGUCHI T, UEDA M, et al. Plasma assisted polishing of single crystal SiC for obtaining atomically flat strain-free surface [J]. CIRP Annals,2011,60(1):571-574. doi: 10.1016/j.cirp.2011.03.072
|
[20] |
DENG H, YAMAMURA K. XTEM observation of 4H-SiC(0001) surfaces processed by plasma assisted polishing [J]. Advanced Materials Research,2012,497:156-159. doi: 10.4028/www.scientific.net/AMR.497.156
|
[21] |
ISHIKAWA Y, MATSUMOTO Y, NISHIDA Y, et al. Surface treatment of silicon carbide using TiO2(IV) photocatalyst [J]. Journal of the American Chemical Society,2003,125(21):6558-6562. doi: 10.1021/ja020359i
|
[22] |
OHNISHI O, DOI T, KUROKAWA S, et al. Effects of atmosphere and ultraviolet light irradiation on chemical mechanical polishing characteristics of SiC wafers [J]. Japanese Journal of Applied Physics,2012,51(5S): 05EF05. doi: 10.1143/JJAP.51.05EF05
|
[23] |
YUAN Z, HE Y, SUN X, et al. UV-TiO2 photocatalysis-assisted chemical mechanical polishing 4H-SiC wafer [J]. Materials and Manufacturing Processes,2018,33(11):1214-1222. doi: 10.1080/10426914.2017.1364855
|
[24] |
GAO B, ZHAI W, ZHAI Q, et al. Novel polystyrene/CeO2-TiO2 multicomponent core/shell abrasives for high-efficiency and high-quality photocatalytic-assisted chemical mechanical polishing of reaction-bonded silicon carbide [J]. Applied Surface Science,2019,484:534-541. doi: 10.1016/j.apsusc.2019.04.037
|
[25] |
BARR H, SANO Y, MIMURA H, et al. Novel abrasive-free planarization of 4H-SiC (0001) using catalyst [J]. Journal of Electronic Materials,2006,35(8):L11-L14. doi: 10.1007/s11664-006-0218-6
|
[26] |
ISOHASHI A, SANO Y, OKAMOTO T, et al. Study on reactive species in catalyst-referred etching of 4H–SiC using platinum and hydrofluoric acid [J]. Materials Science Forum,2013, 740/741/742:847-850. doi: 10.4028/www.scientific.net/MSF.740-742.847
|
[27] |
KUBOTA A, YAGI K, MURATA J, et al. A study on a surface preparation method for single-crystal SiC using an Fe catalyst [J]. Journal of Electronic Materials,2009,38(1):159-163. doi: 10.1007/s11664-008-0583-4
|
[28] |
OKAMOTO T, SANO Y, TACHIBANA K, et al. Improvement of removal rate in abrasive-free planarization of 4H-SiC substrates using catalytic platinum and hydrofluoric acid [J]. Japanese Journal of Applied Physics,2012,51(4):6501. doi: 10.1143/JJAP.51.046501
|
[29] |
LI C, BHAT I B, WANG R, et al. Electro-chemical mechanical polishing of silicon carbide [J]. Journal of Electronic Materials,2004,33(5): 481-486. doi: 10.1007/s11664-004-0207-6
|
[30] |
YANG X, OHKUBO Y, ENDO K, et al. AFM observation of initial oxidation stage of 4H-SiC(0001) in electrochemical mechanical polishing [J]. Procedia CIRP,2018,68:735-740. doi: 10.1016/j.procir.2017.12.129
|
[31] |
YANG X, SUN R, OHKUBO Y, et al. Investigation of anodic oxidation mechanism of 4H-SiC(0001) for electrochemical mechanical polishing [J]. Electrochimica Acta,2018,271:666-676. doi: 10.1016/j.electacta.2018.03.184
|
[32] |
YANG X, YANG X, GU H, et al. Charge utilization efficiency and side reactions in the electrochemical mechanical polishing of 4H-SiC (0001) [J]. Journal of the Electrochemical Society,2022,169(2):023501. doi: 10.1149/1945-7111/ac4b1f
|
[33] |
LIU N, YI R, DENG H. Study of initiation and development of local oxidation phenomena during anodizing of SiC [J]. Electrochemistry Communications,2018,89:27-31. doi: 10.1016/j.elecom.2018.02.013
|
[34] |
YANG X, YANG X, KAWAI K, et al. Highly efficient planarization of sliced 4H–SiC(0001) wafer by slurryless electrochemical mechanical polishing [J]. International Journal of Machine Tools and Manufacture,2019,144:103431. doi: 10.1016/j.ijmachtools.2019.103431
|
[35] |
YANG X, YANG X, GU H, et al. Efficient and slurryless ultrasonic vibration assisted electrochemical mechanical polishing for 4H–SiC wafers [J]. Ceramics International,2022,48(6):7570-7583. doi: 10.1016/j.ceramint.2021.11.301
|
[36] |
YANG X, YANG X, KAWAI K, et al. Novel SiC wafer manufacturing process employing three-step slurryless electrochemical mechanical polishing [J]. Journal of Manufacturing Processes,2021,70:350-360. doi: 10.1016/j.jmapro.2021.08.059
|
[37] |
MURATA J, NAGATOMO D. Investigation of electrolytic condition on abrasive-free electrochemical mechanical polishing of 4H-SiC using Ce thin film [J]. ECS Journal of Solid State Science and Technology,2020,9(3):34002. doi: 10.1149/2162-8777/ab7672
|
[38] |
MURATA J, YODOGAWA K, BAN K. Polishing-pad-free electrochemical mechanical polishing of single-crystalline SiC surfaces using polyurethane-CeO2 core-shell particles [J]. International Journal of Machine Tools & Manufacture,2017,114:1-7. doi: 10.1016/j.ijmachtools.2016.11.007
|
[39] |
GAO B, ZHAI W J, ZHAI Q, et al. Electro-chemical mechanical polishing of 4H-SiC for scratch-free surfaces with less oxide layer at high efficiency [J]. ECS Journal of Solid State Science and Technology,2019,8(11):P677-P684. doi: 10.1149/2.0031911jss
|
[40] |
CHEN Z, ZHAO Y. Investigation into electrochemical oxidation behavior of 4H-SiC with varying anodizing conditions [J]. Electrochemistry Communications,2019,109:106608. doi: 10.1016/j.elecom.2019.106608
|
[41] |
YANG X, YANG X, KAWAI K, et al. Ultrasonic-assisted anodic oxidation of 4H-SiC(0001) surface [J]. Electrochemistry Communications,2019,100:1-5. doi: 10.1016/j.elecom.2019.01.012
|
[42] |
YULI S, DUNWEN Z, JUTE T, et al. Dispersibility of CeO2 nanoparticles in water-ethanol suspensions [J]. Integrated Ferroelectrics,2014,153(1):54-59. doi: 10.1080/10584587.2014.902712
|
[43] |
WANG W, ZHANG B, SHI Y, et al. Improvement in dispersion stability of alumina suspensions and corresponding chemical mechanical polishing performance [J]. Applied Surface Science,2022,597:153703. doi: 10.1016/j.apsusc.2022.153703
|
[44] |
YANG X, YANG X, KAWAI K, et al. Dominant factors and their action mechanisms on material removal rate in electrochemical mechanical polishing of 4H-SiC(0001) surface [J]. Applied Surface Science,2021,562:150130. doi: 10.1016/j.apsusc.2021.150130
|
[45] |
YANG X, YANG X, SUN R, et al. Obtaining atomically smooth 4H–SiC(0001) surface by controlling balance between anodizing and polishing in electrochemical mechanical polishing [J]. Nanomanufacturing and Metrology,2019,2(3):140-147. doi: 10.1007/s41871-019-00043-5
|
[46] |
HERRMANN M, SEMPF K, WENDROCK H, et al. Electrochemical corrosion of silicon carbide ceramics in sodium hydroxide [J]. Journal of the European Ceramic Society,2014,34(7):1687-1693. doi: 10.1016/j.jeurceramsoc.2013.12.043
|