CN 41-1243/TG ISSN 1006-852X
Volume 44 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
TANG Ailing, YUAN Zewei, TANG Meiling, WANG Ying. Effect of abrasive vibration on microstructure evolution and material removal of SiC CMP[J]. Diamond & Abrasives Engineering, 2024, 44(1): 109-122. doi: 10.13394/j.cnki.jgszz.2023.0053
Citation: TANG Ailing, YUAN Zewei, TANG Meiling, WANG Ying. Effect of abrasive vibration on microstructure evolution and material removal of SiC CMP[J]. Diamond & Abrasives Engineering, 2024, 44(1): 109-122. doi: 10.13394/j.cnki.jgszz.2023.0053

Effect of abrasive vibration on microstructure evolution and material removal of SiC CMP

doi: 10.13394/j.cnki.jgszz.2023.0053
More Information
  • Received Date: 2023-03-07
  • Accepted Date: 2023-04-17
  • Rev Recd Date: 2023-04-09
  • To address issues related to abrasion, agglomeration, and the challenges of mechanical and chemical release during chemical mechanical polishing (CMP), a vibration-assisted CMP method is employed. Molecular dynamics simulation analyze the dynamic evolution of frequency, amplitude, and indentation depth, along with the dicing speed of abrasive vibration on the workpiece's surface. It reveals the mechanism behind enhanced material removal and improved surface quality facilitated by vibration. The effectiveness and removal mechanism of vibration-assisted CMP are validated through process testing and surface composition analysis. The results show that atomic potential energy and temperature on the workpiece surface can be effectively improved by appropriately increasing vibration frequency, vibration amplitude, indentation depth, and abrasive particle cutting speed. Abrasive vibration contributes to increased atomic disorder on the workpiece surface, facilitating the participation of silicon carbide in oxidation reactions. This process results in the formation of an oxide layer, which is mechanically removed. Polishing tests and composition analyses also confirms that vibration can improve material removal rates by about 50.5% and improve the surface quality by about 25.4%.

     

  • loading
  • [1]
    王莹. SiC: 为何被称为是新一代功率半导体 [J]. 电子产品世界,2019,26(9):79-82.

    WANG Ying. SiC: Why is it called a new generation of power semiconductor [J]. Electronics World,2019,26(9):79-82.
    [2]
    顾瑾栩, 张倩, 卢晓威. 北京第三代半导体产业发展思路的研究 [J]. 集成电路应用,2019,36(5):1-6. doi: 10.19339/j.issn.1674-2583.2019.05.001

    GU Jinxu, ZHANG qian, LU Xiaowei. Research on the development ideas of the third generation semiconductor industry in Beijing [J]. Integrated Circuit Application,2019,36(5):1-6. doi: 10.19339/j.issn.1674-2583.2019.05.001
    [3]
    赵婉雨. 聚焦产业关键技术, 把握第三代半导体发展机遇−第三代半导体材料产业技术分析报告 [J]. 高科技与产业化,2019(5):28-40.

    ZHAO Wanyu. Focus on the key technologies of the industry, grasp the development opportunities of the third generation semiconductor-the technical analysis report of the third generation semiconductor material industry [J]. High-tech and industrialization,2019(5):28-40.
    [4]
    李娟, 陈秀芳, 马德营, 等. SiC单晶片的超精密加工 [J]. 功能材料,2006,37(1):70-72. doi: 10.3321/j.issn:1001-9731.2006.01.021

    LI Juan, CHEN Xiufang, MA Deying, et al. Ultra-precision machining of SiC single wafer [J]. Functional Materials,2006,37(1):70-72. doi: 10.3321/j.issn:1001-9731.2006.01.021
    [5]
    肖强, 李言, 李淑娟. SiC单晶片化学机械抛光超精密加工技术现状与趋势 [J]. 宇航材料工艺,2010,40(1):9-13. doi: 10.3969/j.issn.1007-2330.2010.01.003

    XIAO Qiang, LI Yan, LI Shujuan. Present situation and trend of ultra-precision machining technology of chemical mechanical polishing of SiC single wafer [J]. Aerospace Materials Technology,2010,40(1):9-13. doi: 10.3969/j.issn.1007-2330.2010.01.003
    [6]
    韩杰才, 张宇民, 赫晓东. 大尺寸轻型SiC光学反射镜研究进展 [J]. 宇航学报,2001(6):124-132. doi: 10.3321/j.issn:1000-1328.2001.06.021

    HAN Jiecai, ZHANG Yumin, HE Xiaodong. Research progress of large-size light SiC optical mirror [J]. Journal of Aerospace,2001(6):124-132. doi: 10.3321/j.issn:1000-1328.2001.06.021
    [7]
    马文礼, 沈忙作. 碳化硅轻型反射镜技术 [J]. 光学精密工程,1999(2):9-13. doi: 10.3321/j.issn:1004-924X.1999.02.002

    MA Wenli, SHEN Mangzuo. Silicon carbide light mirror technology [J]. Optical Precision Engineering,1999(2):9-13. doi: 10.3321/j.issn:1004-924X.1999.02.002
    [8]
    毛旭. SiC材料制备工艺研究进展 [J]. 云南大学学报,2002,24(1A):197-202.

    MAO Xu. Research progress in preparation technology of SiC materials [J]. Journal of Yunnan University,2002,24(1A):197-202.
    [9]
    耿连福, 高顺喜, 李美岩. 难加工材料的切削加工性研究与实践 [J]. 煤矿机械,2009,30(7):97-99. doi: 10.3969/j.issn.1003-0794.2009.07.045

    GENG Lianfu, GAO Shunxi, LI Meiyan. Research and practice on machinability of difficult-to-machine materials [J]. Coal Mine Machinery,2009,30(7):97-99. doi: 10.3969/j.issn.1003-0794.2009.07.045
    [10]
    AIDA H, DOI T, TAKEDA H, et al. Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials [J]. Current Applied Physics,2012,12:S41-S46. doi: 10.1016/j.cap.2012.02.016
    [11]
    XU W H, LU X C, PAN G S, et al. Ultrasonic flexural vibration assisted chemical mechanical polishing for sapphire [J]. Applied Surface Science,2010,256(12):3936-3940. doi: 10.1016/j.apsusc.2010.01.053
    [12]
    TSAI M Y, YANG W Z. Combined ultrasonic vibration and chemical mechanical polishing of copper substrates [J]. International Journal of Machine Tools & Manufacture,2012,53(1):69-76.
    [13]
    LIU D F, YAN R M, CHEN T. Material removal model of ultrasonic elliptical vibration-assisted chemical mechanical polishing for hard and brittle materials [J]. International Journal of Advanced Manufacturing Technology,2017,92(1-4):81-99. doi: 10.1007/s00170-017-0081-z
    [14]
    石栋. 超声辅助单晶SiC晶片的研磨与化学机械抛光研究 [D]. 长春: 吉林大学, 2020.

    SHI Dong. Study on ultrasonic-assisted grinding and chemical mechanical polishing of single crystal SiC wafer [D]. Changchun: Jilin University, 2020.
    [15]
    YUAN Z , HE Y , SUN X , et al. UV-TiO2 photocatalysis- assisted chemical mechanical polishing 4H-SiC wafer [J]. Materials and Manufacturing Processes, 2017: 10426914.
    [16]
    于保军, 郭桌一, 卢发祥, 等. 紫外光催化振动复合抛光 [J]. 红外与激光工程,2022,51(11):361-367.

    YU Baojun, GUO Zhuoyi, LU Faxiang, et al. UV-catalyzed vibration compound polishing [J]. Infrared and Laser Engineering,2022,51(11):361-367.
    [17]
    罗熙淳, 梁迎春, 董申. 单晶硅纳米加工机理的分子动力学研究 [J]. 航空精密制造技术,2000,36(3):1-24. doi: 10.3969/j.issn.1003-5451.2000.03.001

    LUO Xichun, LIANG Yingchun, DONG Shen. Molecular dynamics study on nanoprocessing mechanism of single crystal silicon [J]. Aviation Precision Manufacturing Technology,2000,36(3):1-24. doi: 10.3969/j.issn.1003-5451.2000.03.001
    [18]
    MONTI S, LI C, CARRAVETTA V. Reactive dynamics simulation of monolayer and multilayer adsorption of glycine on Cu(110) [J]. The Journal of Physical Chemistry C,2013,117(10):5221-5228. doi: 10.1021/jp312828d
    [19]
    唐美玲. 光催化辅助拋光碳化硅材料去除机理研究 [D]. 沈阳: 沈阳工业大学, 2020.

    TANG Meiling. Study on the removal mechanism of photocatalytic assisted polishing of silicon carbide materials [D]. Shenyang: Shenyang University of Technology, 2020.
    [20]
    李论. 振动辅助单颗磨粒划擦碳化硅晶体的数值仿真研究 [D]. 厦门: 华侨大学, 2019.

    LI Lun. Numerical simulation study on vibration-assisted single abrasive particle scratching silicon carbide crystal [D]. Xiamen: Huaqiao University, 2019.
    [21]
    何艳. 光催化辅助抛光碳化硅晶片工艺及机理研究 [D]. 沈阳: 沈阳工业大学, 2019.

    HE Yan. Study on the process and mechanism of photocatalytic assisted polishing of silicon carbide wafer [D]. Shenyang: Shenyang University of Technology, 2019.
    [22]
    MURAKAMI N, KAWAKAMI S, TSUBOTA T, et al. Dependence of photocatalytic activity on particle size of a shape-controlled anatase titanium(IV) oxide nanocrystal [J]. Journal of Molecular Catalysis A:Chemical,2012,358:106-111. doi: 10.1016/j.molcata.2012.03.003
    [23]
    ALALM M G, TAWFIK A, OOKAWARA S. Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry waste water: Operational conditions, kinetics, and costs [J]. Journal of Water Process Engineering. 2015, 8: 55-63.
    [24]
    PARK K H, KIM K T, HONG Y H, et al. Study on effect of ultrasonic vibration in machining of alumina ceramic [J]. Key Engineering Materials,2012,516:311-316. doi: 10.4028/www.scientific.net/KEM.516.311
    [25]
    赵明利, 赵波, 高国富. 超精密研抛及超声波研抛技术分析 [J]. 现代机械,2006(6):50-53. doi: 10.3969/j.issn.1002-6886.2006.06.021

    ZHAO Mingli, ZHAO Bo, GAO Guofu. Analysis of ultra-precision polishing and ultrasonic polishing technology [J]. Modern Machinery,2006(6):50-53. doi: 10.3969/j.issn.1002-6886.2006.06.021
    [26]
    TERSOFF J. New empirical model for the structural properties of silicon [J]. Physical review letters,1986,56(6):632. doi: 10.1103/PhysRevLett.56.632
    [27]
    TERSOFF J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems [J]. Physical review B,1989,39(8):5566. doi: 10.1103/PhysRevB.39.5566
    [28]
    苑泽伟. 利用化学和机械协同作用的CVD金刚石抛光机理与技术 [D]. 大连: 大连理工大学, 2012.

    YUAN Zewei. Mechanism and technology of CVD diamond polishing by chemical and mechanical synergy [D]. Dalian: Dalian University of Technology, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(31)  / Tables(1)

    Article Metrics

    Article views (131) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return