CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钎焊工艺对钎焊金刚石界面组织和性能的影响

崔冰 姜雪 杜全斌 徐凡 严佩佩 王蕾 张黎燕

崔冰, 姜雪, 杜全斌, 徐凡, 严佩佩, 王蕾, 张黎燕. 钎焊工艺对钎焊金刚石界面组织和性能的影响[J]. 金刚石与磨料磨具工程, 2025, 45(1): 56-66. doi: 10.13394/j.cnki.jgszz.2024.0026
引用本文: 崔冰, 姜雪, 杜全斌, 徐凡, 严佩佩, 王蕾, 张黎燕. 钎焊工艺对钎焊金刚石界面组织和性能的影响[J]. 金刚石与磨料磨具工程, 2025, 45(1): 56-66. doi: 10.13394/j.cnki.jgszz.2024.0026
CUI Bing, JIANG Xue, DU Quanbin, XU Fan, YAN Peipei, WANG Lei, ZHANG Liyan. Effect of brazing process on microstructure and properties of brazed diamond interface[J]. Diamond & Abrasives Engineering, 2025, 45(1): 56-66. doi: 10.13394/j.cnki.jgszz.2024.0026
Citation: CUI Bing, JIANG Xue, DU Quanbin, XU Fan, YAN Peipei, WANG Lei, ZHANG Liyan. Effect of brazing process on microstructure and properties of brazed diamond interface[J]. Diamond & Abrasives Engineering, 2025, 45(1): 56-66. doi: 10.13394/j.cnki.jgszz.2024.0026

钎焊工艺对钎焊金刚石界面组织和性能的影响

doi: 10.13394/j.cnki.jgszz.2024.0026
基金项目: 河南省高校重点科研项目(24A460008); 河南省重点研发与推广专项科技攻关项目(242102220064, 241111231600)。
详细信息
    作者简介:

    通信作者:杜全斌,男,1983年生,博士、副教授。主要研究方向:先进焊接材料与装备超硬工具制备技术与装备、金刚石热界面材料开发、激光增材表面修复再制造。E-mail:paperduqb@126.com

  • 中图分类号: TQ164; TG74

Effect of brazing process on microstructure and properties of brazed diamond interface

  • 摘要: 采用WC/Cu-Sn-Ti钎料对金刚石进行真空钎焊,借助扫描电子显微镜、X射线衍射仪、能谱仪以及磨削试验等手段,研究钎焊温度和保温时间对钎焊金刚石形貌、界面组织和力学性能的影响。结果表明:金刚石颗粒与WC/Cu-Sn-Ti复合钎焊界面形成的化合物层均匀连续且致密,且在金刚石颗粒表面形成了薄而连续的层片状TiC和少量W2C相,提高了金刚石与钢基体的结合强度;随着钎焊温度升高及保温时间延长,钎焊界面缺陷逐渐减少,金刚石石墨化程度升高;在钎焊温度为980 ℃、保温时间为15 min的条件下,金刚石颗粒在磨削过程中的摩擦力和摩擦系数相对较小,对大理石工件的磨削体积最大,且金刚石颗粒的脱落率最低。

     

  • 图  1  钎焊试样结构示意图

    Figure  1.  Schematic diagram of brazing specimen structure

    图  2  MFT-3000摩擦磨损测试仪操作台

    Figure  2.  MFT-3000 friction and wear tester operation table

    图  3  钎焊金刚石界面形貌及其界面处的元素扫描结果

    Figure  3.  Interface morphology of brazed diamond and the element scanning results at interface

    图  4  钎焊试样的XRD图谱

    Figure  4.  XRD pattern of brazed specimen

    图  5  钎焊金刚石表面的形貌及EDS分析

    Figure  5.  Morphology and EDS analysis of brazed diamond surface

    图  6  不同钎焊温度下的金刚石表面形貌

    Figure  6.  Surface morphology of diamond at different brazing temperatures

    图  7  不同保温时间下金刚石钎焊后的表面形貌

    Figure  7.  Surface morphology of diamond after brazing with different holding times

    图  8  不同温度下钎焊试样的拉曼光谱

    Figure  8.  Raman spectra of brazed specimens at differenttemperatures

    图  9  不同温度下钎焊试样的石墨化程度

    Figure  9.  Graphitising degree of brazed specimens at differenttemperatures

    图  10  不同钎焊温度下金刚石的磨削力和摩擦系数

    Figure  10.  Grinding force and friction coefficient of diamond at different brazing temperatures

    图  11  金刚石的磨损形貌

    Figure  11.  Wear morphology of diamond

    图  12  不同钎焊温度下金刚石脱落率统计

    Figure  12.  Statistics of diamond detachment rate at different brazing temperatures

    图  13  不同保温时间下金刚石的摩擦系数和脱落数

    Figure  13.  Statistics of friction coefficient and detachment number of diamond under different insulation times

    图  14  金刚石试样的磨削过程示意图

    Figure  14.  Schematic diagram of grinding process of diamond specimen

    图  15  不同保温时间下钎焊金刚石试样磨削大理石的体积

    Figure  15.  Volumes of grinding marble with brazed diamond specimens at different holding times

  • [1] MONTEIRO W A, CARRIO J A G, DA SILVEIRA C R, et al. Structural and electrical properties of copper-nickel-aluminum alloys obtained by conventional powder metallurgy method [J]. Materials Science Forum, 2010, 660/661: 41-45
    [2] SUNG J C, SUNG M. The brazing of diamond [J]. International Journal of Refractory Metals & Hard Materials,2009,27(2):382-393. doi: 10.1016/j.ijrmhm.2008.11.011
    [3] SU S Y, ZANG J B, ZHOU Y K, et al. Efficient manufacture of high-performance electroplated diamond wires utilizing Cr-coated diamond micro-powder [J]. Materials Science in Semiconductor Processing,2024, 179:108511. doi: 10.1016/j.mssp.2024.108511
    [4] 李鸿程. 新型金刚石分齿烧结锯片的半自动成型模具 [J]. 超硬材料工程, 2010, 22(2): 28-31.

    LI Hongcheng. New semi-automated forming mould for sintering diamond saw blade [J]. Superhard Material Engineering, 2010, 22(2): 28-31.
    [5] 关砚聪, 郑敏利, 姚德明. 铜基钎料焊接金刚石的界面结构与强度 [J]. 焊接学报,2012,33(7):65-68,116.

    GUAN Yancong, ZHENG Minli, YAO Deming. Interfacial structure and strength of Cu-based filler metal welding diamond [J]. Transactions of the China Welding Institution,2012,33(7):65-68,116.
    [6] 周玉梅, 张凤林. 钎焊单层金刚石工具研究现状 [J]. 焊接技术,2010,39(6):1-6. doi: 10.3969/j.issn.1002-025X.2010.06.001

    ZHOU Yumei, ZHANG Fenglin. Status of research on brazed monolayer diamond tool [J]. Welding Technology,2010,39(6):1-6. doi: 10.3969/j.issn.1002-025X.2010.06.001
    [7] LU J B, LI H, LI Y, et al. Study on diamond vacuum brazed with Cu-based filler metal containing Cr [J]. International Journal of Advanced Manufacturing Technology,2017,91(5/6/7/8):1453-1460. doi: 10.1007/s00170-016-9802-y
    [8] 卢金斌, 李华, 刘威, 等. 添加Ni-Cr-B-Si的Cu基复合钎料真空钎焊金刚石界面微结构 [J]. 中国机械工程,2018,29(3):353-358, 365. doi: 10.3969/j.issn.1004-132X.2018.03.016

    LU Jinbing, LI Hua, LIU Wei, et al. Interfacial microstructure of diamond vacuum brazed with Cu-based composite filler metals adding Ni-Cr-B-Si alloy [J]. China Mechanical Engineering,2018,29(3):353-358, 365. doi: 10.3969/j.issn.1004-132X.2018.03.016
    [9] ZHU M, CHUNG D. Active brazing alloy containing carbon fibre for metal-ceramic ioining [J]. Journal of the American Ceramic Society,1994,77:2715-2720. doi: 10.1002/chin.199507018
    [10] TAO Y, WANG Z, WANG X. Effects of Ni–Cr–Mo–Si–B prealloy additives on the properties of Fe-based diamond composites [J]. Diamond and Related Materials,2024,148:111482. doi: 10.1016/j.diamond.2024.111482
    [11] XIAO H Z, XIAO B, WU H H, et al. Microstructure and mechanical properties of vacuum brazed CBN abrasive segments with tungsten carbide reinforced Cu-Sn-Ti alloys [J]. Ceramics International,2019,45(9):12469-12475. doi: 10.1016/j.ceramint.2019.03.181
    [12] DUAN D Z, HAN F, DING J J, et al. Microstructure and performance of brazed diamonds with multilayer graphene-modified Cu–Sn–Ti solder alloys [J]. Ceramics International,2021,47(16):22854-22863. doi: 10.1016/j.ceramint.2021.04.304
    [13] YIN X H, XU F, MIN C Y, et al. Promoting the bonding strength and abrasion resistance of brazed diamond using Cu-Sn-Ti composite alloys reinforced with tungsten carbide [J]. Diamond and Related Materials,2021,112:108239. doi: 10.1016/j.diamond.2021.108239
    [14] MÜHLBAUER G, KREMSER G, BOCK A, et al. Transition of W2C to WC during carburization of tungsten metal powder [J]. International Journal of Refractory Metals and Hard Materials,2018,72:141-148. doi: 10.1016/j.ijrmhm.2017.12.018
    [15] 候逸群, 张锁怀, 徐少丽, 等. 基于第一性原理的涂层WC/α-Ti界面结合能、稳定性及电子结构的研究 [J]. 热加工工艺,2021,50(10):75-80, 85. doi: 10.14158/j.cnki.1001-3814.20200177

    HOU Yiqun, ZHANG Suohuai, XU Shaoli, et al. Research on binding enegy, Stability and electronic structure of coating WC/α-Ti interface based on first principles [J]. Hot Working Technology,2021,50(10):75-80, 85. doi: 10.14158/j.cnki.1001-3814.20200177
    [16] MIAO Q, DING W, ZHU Y, et al. Joining interface and compressive strength of brazed cubic boron nitride grains with Ag-Cu-Ti/TiX composite fillers [J]. Ceramics International,2016:13723-13737. doi: 10.1016/j.ceramint.2016.05.171
    [17] 邹明, 周莱. 金刚石切削黑色金属时刀具磨损机理的摩擦磨损试验 [J]. 光学精密工程,2013,21(7):1786-1794. doi: 10.3788/OPE.20132107.1786

    ZOU Ming, ZHOU Lai. Tool wear mechanism of diamond cutting of ferrous metals in frictional wear experiments [J]. Optics and Precision Engineering,2013,21(7):1786-1794. doi: 10.3788/OPE.20132107.1786
    [18] YIN X H, XU F, MIN C Y, et al. Promoting the bonding strength and abrasion resistance of brazed diamond using Cu-Sn-Ti composite alloys reinforced with tungsten carbide [J]. Diamond and Related Materials,2021(112):108239.
  • 加载中
图(15)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  23
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-02
  • 修回日期:  2024-04-22
  • 录用日期:  2024-05-08
  • 网络出版日期:  2025-03-24
  • 刊出日期:  2025-02-20

目录

    /

    返回文章
    返回