CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干式轻质异形介质的离散元仿真模型参数标定

梁志强 李秀红 王兴富 李文辉 杨胜强 梁振华

梁志强, 李秀红, 王兴富, 李文辉, 杨胜强, 梁振华. 干式轻质异形介质的离散元仿真模型参数标定[J]. 金刚石与磨料磨具工程, 2025, 45(1): 122-133. doi: 10.13394/j.cnki.jgszz.2024.0016
引用本文: 梁志强, 李秀红, 王兴富, 李文辉, 杨胜强, 梁振华. 干式轻质异形介质的离散元仿真模型参数标定[J]. 金刚石与磨料磨具工程, 2025, 45(1): 122-133. doi: 10.13394/j.cnki.jgszz.2024.0016
LIANG Zhiqiang, LI Xiuhong, WANG Xingfu, LI Wenhui, YANG Shengqiang, LIANG Zhenhua. Parameter calibration of a discrete element simulation model for dry lightweight heterogeneous media[J]. Diamond & Abrasives Engineering, 2025, 45(1): 122-133. doi: 10.13394/j.cnki.jgszz.2024.0016
Citation: LIANG Zhiqiang, LI Xiuhong, WANG Xingfu, LI Wenhui, YANG Shengqiang, LIANG Zhenhua. Parameter calibration of a discrete element simulation model for dry lightweight heterogeneous media[J]. Diamond & Abrasives Engineering, 2025, 45(1): 122-133. doi: 10.13394/j.cnki.jgszz.2024.0016

干式轻质异形介质的离散元仿真模型参数标定

doi: 10.13394/j.cnki.jgszz.2024.0016
基金项目: 国家自然科学基金(51975399,51875389);中央引导地方科技发展资金(YDZJSX2022A020,YDZJSX2022B004)。
详细信息
    通讯作者:

    李秀红,女,1972年生,博士,教授。主要研究方向:精密零件表面光整加工理论与技术。E-mail:xhli7489@sina.com

  • 中图分类号: TG731

Parameter calibration of a discrete element simulation model for dry lightweight heterogeneous media

  • 摘要: 干式轻质异形介质是滚磨光整加工中常用的一类加工介质,其形状各异,导致离散元仿真中所使用的接触参数难以测试与标定,影响仿真模拟的准确性。以核桃壳介质为研究对象,首先通过物理试验测得核桃壳介质的几何形态、密度以及弹性/剪切模量等本征参数,其次采用自制的接触参数测量装置获得核桃壳介质与亚克力板间的静摩擦系数、滚动摩擦系数、碰撞恢复系数及核桃壳介质间的碰撞恢复系数,最后基于不同形状的特征参数,采用多维法构建出24种干式异形介质单颗粒仿真模型,并以实际堆积角为目标进行寻优,开展2因素5水平旋转正交组合仿真模拟试验,获得核桃壳介质间的静摩擦系数和滚动摩擦系数的最佳参数组合:静摩擦系数为0.829、滚动摩擦系数为0.191。采用测试及标定的本征参数和接触参数进行不同挡板抬升速度下的堆积角仿真,并与试验结果对比,最大相对误差<4%。

     

  • 图  1  核桃壳介质

    Figure  1.  Walnut shell particles medium

    图  2  核桃壳介质的粒径分布

    Figure  2.  Particle size distribution of walnut shell particles medium

    图  3  形状评定参数示意图

    Figure  3.  Schematic diagram of shape evaluation parameters

    图  4  核桃壳介质的形状参数分布

    Figure  4.  Shape parameter distribution of walnut shell particles medium

    图  5  真实密度测量试验装置

    1—精密天平(精度:0.001 g);2—100 mL量筒。

    Figure  5.  True density measuring test device

    图  6  核桃壳介质的压缩试验

    Figure  6.  Compression test of walnut shell particles medium

    图  7  亚克力板

    Figure  7.  Acrylic plate

    图  8  静摩擦系数测试装置

    1—斜板;2—倾角仪;3—连杆;4—万向节;5—伺服电机;6—支撑座;7—丝杆;8—滑轨;9—滑块;10—铝制连接台。

    Figure  8.  Static friction coefficient test device

    图  9  滚动摩擦系数测试

    Figure  9.  Rolling friction coefficient test

    图  10  碰撞恢复系数测试原理图

    Figure  10.  Collision recovery coefficient test schematic diagram

    图  11  碰撞恢复系数测试装置

    Figure  11.  Collision recovery coefficient test device

    图  12  实际堆积角测量装置

    1—料箱;2—挡板;3—锁紧螺母;4—固定轴丝杆步进电机;5—外箱。

    Figure  12.  Actual stacking angle measuring device

    图  13  堆积角图像识别及处理

    Figure  13.  Image recognition and processing of stacking angle

    图  14  Hertz -Mindlin(no slip)接触模型

    Figure  14.  Hertz -Mindlin (no slip) contact model

    图  15  多维法划分形状参数区间

    Figure  15.  Multidimensional method to divide shape parameter interval

    图  16  二维长宽比与三维延伸率之间的关系

    Figure  16.  Relationship between two-dimensional aspect ratio and three-dimensional elongation

    图  17  二维圆形度与三维球形度之间的关系

    Figure  17.  Relationship between two-dimensional circularity medium and three-dimensional sphericity

    图  18  核桃壳介质仿真模型的建立

    Figure  18.  Establishment of simulation model of walnut shell particles

    图  19  仿真堆积试验装置

    1—核桃壳介质仿真颗粒;2—挡板;3—料箱。

    Figure  19.  Simulation stacking test device

    图  20  核桃壳介质间静摩擦系数与滚动摩擦系数的响应曲面图

    Figure  20.  Response surface diagram of static fiction coefficient and rolling friction coefficient between walnut shell particle medium

    图  21  不同抬升速度下仿真与实际堆积角数值对比

    Figure  21.  Comparison of simulation and physical stacking angle values at different lifting speeds

    表  1  形状评定参数

    Table  1.   Shape evaluation parameter

    参数 定义 描述特征
    球形度Sp Da / Dp 描述颗粒的近球形程度
    延伸率W/L FW / FL 描述颗粒的狭长程度
    扁平度T/W FT / FW 描述颗粒的扁平程度
    注:Da为介质一系列投影图像等面积圆直径的均值;Dp为介质一系列投影图像等周长圆直径的均值;FWFLFT分别为介质的长度、宽度和厚度。
    下载: 导出CSV

    表  2  核桃壳介质仿真模型

    Table  2.   DEM model of walnut shell particles medium

    序号 1 2 3 4 5 6 7 8 9
    $ \overline S_{\mathrm{p}} $ 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895
    $\overline {W/L} $ 0.610 0.610 0.610 0.730 0.730 0.730 0.850 0.850 0.850
    $\overline {T/W} $ 0.530 0.680 0.830 0.530 0.680 0.830 0.530 0.680 0.830
    颗粒模型
    占比 P /% 2.1 3.5 1.5 5.4 2.9 0.7 1.9 0.7 0.2
    序号 10 11 12 13 14 15 16 17 18
    $ \overline{S\mathrm{_{_p}}} $ 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
    $\overline {W/L} $ 0.610 0.610 0.610 0.730 0.730 0.730 0.850 0.850 0.850
    $\overline {T/W} $ 0.530 0.680 0.830 0.530 0.680 0.830 0.530 0.680 0.830
    颗粒模型
    占比 P /% 0.8 4.0 4.0 8.4 17.7 7.3 7.1 8.0 2.1
    序号 19 20 21 22 23 24 25 26 27
    $ \overline{S\mathrm{_{_p}}} $ 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955
    $\overline {W/L} $ 0.610 0.610 0.610 0.730 0.730 0.730 0.850 0.850 0.850
    $\overline {T/W} $ 0.530 0.680 0.830 0.530 0.680 0.830 0.530 0.680 0.830
    颗粒模型
    占比 P /% 0 0 0 0.6 4.0 4.9 1.7 6.0 4.2
    下载: 导出CSV

    表  3  仿真参数设置

    Table  3.   Simulation parameters setting

    仿真参数 数值
    核桃壳介质密度 $ {\rho _1} $/(kg·m−3 1.024 × 103
    核桃壳介质泊松比 μ1 0.29
    核桃壳介质剪切模量 G1/Pa 9.219 × 107
    亚克力板密度 $ {\rho _2} $/(kg·m−3 1.200 × 103
    亚克力板泊松比 μ2 0.50
    亚克力板剪切模量 G2/Pa 1.770 × 108
    核桃壳介质—亚克力板碰撞恢复系数 Cr 0.246
    核桃壳介质—亚克力板静摩擦系数 μs 0.422
    核桃壳介质—亚克力板滚动摩擦系数 μr 0.175
    核桃壳介质间碰撞恢复系数 Cr' 0.340
    核桃壳介质间静摩擦系数 μs' 0.720 ~ 0.920
    核桃壳介质间滚动摩擦系数 μr' 0.020 ~ 0.200
    下载: 导出CSV

    表  4  仿真参数水平

    Table  4.   Parameter levels for simulation tests

    水平 核桃壳介质间
    静摩擦系数 X1
    核桃壳介质间
    滚动摩擦系数 X2
    −2 0.720 0.020
    −1 0.770 0.065
    0 0.820 0.110
    1 0.870 0.155
    2 0.920 0.200
    下载: 导出CSV

    表  5  设计方案及结果

    Table  5.   Design scheme and results

    编号 因素 堆积角 θ /(°)
    X1 X2
    1 −1 −1 35.15
    2 1 −1 40.12
    3 −1 1 41.45
    4 1 1 42.12
    5 −2 0 34.71
    6 2 0 41.54
    7 0 −2 35.63
    8 0 2 45.51
    9 0 0 39.93
    10 0 0 40.23
    11 0 0 40.38
    12 0 0 40.17
    13 0 0 41.21
    下载: 导出CSV

    表  6  二阶回归模型方差分析

    Table  6.   Second order regression model analysis of variance

    方差源 平方和 SS 自由度 df 均方 MS P
    模型 109.70 5 21.94 <0.000 1
    X1X1 10.76 1 14.62 0.000 3
    X2X2 5.71 1 3.01 0.001 8
    X1 X2 4.62 1 4.62 0.003 2
    X12 7.32 1 10.77 0.010 5
    X22 0.044 0 1 28.65 0.000 8
    残差 1.68 7 0.898 0
    失拟项 0.719 0 3 1.59 0.478 7
    纯误差 0.957 9 4 0.378 6
    总和 111.38 12
    下载: 导出CSV
  • [1] 杨胜强, 李文辉, 李秀红, 等. 高性能零件滚磨光整加工的研究进展 [J]. 表面技术,2019,48(10):13-24. doi: 10.16490/j.cnki.issn.1001-3660.2019.10.002

    YANG Shengqiang, LI Wenhui, LI Xiuhong, et al. Research development of mass finishing for high-performance parts [J]. Surface Technology,2019,48(10):13-24. doi: 10.16490/j.cnki.issn.1001-3660.2019.10.002
    [2] LI X H, LI W H, YANG S Q, et al. Study on polyurethane media for mass finishing process: Dynamic characteristics and performance [J]. International Journal of Mechanical Sciences,2018,138:250-261. doi: 10.1016/j.ijmecsci.2018.02.017
    [3] WANG J M, LI X H, LI W H, et al. Research of horizontal vibratory finishing for aero-engine blades: Movement characteristics and action behavior of media [J]. The International Journal of Advanced Manufacturing Technology,2023,126(5):2065-2081. doi: 10.1007/s00170-023-11186-7
    [4] 韩锐, 李秀红, 王嘉明, 等. 水平强制振动光整加工对TC4钛合金表面完整性参数的影响 [J]. 中国机械工程,2023,34(17):2037-2047. doi: 10.3969/j.issn.1004-132X.2023.17.003

    HAN Rui, LI Xiuhong, WANG Jiaming, et al. Influences of horizontal forced vibration finishing on surface integrity parameters of TC4 titanium alloys [J]. China Mechanical Engineering,2023,34(17):2037-2047. doi: 10.3969/j.issn.1004-132X.2023.17.003
    [5] DAVIDSON D A. Green mass finishing with dry abrasive and polishing media novel finishing process allows refined surface edge effects while avoiding conventional wet-waste discharge [J]. Metal Finishing,2007,105(5):45-48. doi: 10.1016/S0026-0576(07)80551-4
    [6] HERNANDEZ-GARCIA C, BULLARD D, HANNON F, et al. High voltage performance of a DC photoemission electron gun with centrifugal barrel-polished electrodes [J]. Review of Scientific Instruments,2017,88(9):093303. doi: 10.1063/1.4994794
    [7] LV D J, WANG Y G, YU X, et al. Analysis of abrasives on cutting edge preparation by drag finishing [J]. The International Journal of Advanced Manufacturing Technology,2022,119(5):3583-3594. doi: 10.1007/s00170-021-08623-w
    [8] 李秀红, 王兴富, 杨英波, 等. 一种用于轴承滚动体表面的多仓超精离心抛磨装置及方法: CN114714239A [P]. 2022-07-08.

    LI Xiuhong, WANG Xingfu, YANG Yingbo, et al. A multi chamber ultra precision centrifugal polishing device and method for bearing rolling element surface: CN114714239A [P]. 2022-07-08.
    [9] 王键, 陆静. 寿山石的自动化拖拽抛光研究 [J]. 金刚石与磨料磨具工程,2020,40(4):53-58. doi: 10.13394/j.cnki.jgszz.2020.4.0008

    WANG Jian, LU Jing. Research on automatic draging-polishing of Shoushan stone [J]. Diamond & Abrasives Engineering,2020,40(4):53-58. doi: 10.13394/j.cnki.jgszz.2020.4.0008
    [10] 王强, 李锻能, 廖伟东, 等. 二级行星磨料抛光机对矩形手机边框抛光实验研究 [J]. 机床与液压,2017,45(20):41-44. doi: 10.3969/j.issn.1001-3881.2017.20.011

    WANG Qiang, LI Duanneng, LIAO Weidong, et al. Experimental study on rectangular mobile frame by secondary planet abrasive polishing machine [J]. Machine Tool & Hydraulics,2017,45(20):41-44. doi: 10.3969/j.issn.1001-3881.2017.20.011
    [11] 王志成, 李文辉, 李秀红, 等. 整体叶盘回转辅助水平振动式抛磨的颗粒力学行为仿真分析 [J]. 金刚石与磨料磨具工程,2022,42(5):617-625. doi: 10.13394/j.cnki.jgszz.2022.0051

    WANG Zhicheng, LI Wenhui, LI Xiuhong, et al. Simulation analysis of particle mechanical behavior in rotary-assisted horizontal vibration polishing of blisk [J]. Diamond & Abrasives Engineering,2022,42(5):617-625. doi: 10.13394/j.cnki.jgszz.2022.0051
    [12] 张荔, 李文辉, 杨胜强. 滚磨光整加工中磨料颗粒堆积角的离散元参数标定 [J]. 中国科技论文,2016,11(16):1821-1825. doi: 10.3969/j.issn.2095-2783.2016.16.006

    ZHANG Li, LI Wenhui, YANG Shengqiang. Calibration of discrete element parameters of abrasive particle in mass finishing process [J]. China Sciencepaper,2016,11(16):1821-1825. doi: 10.3969/j.issn.2095-2783.2016.16.006
    [13] LI X Y, DU Y F, LIU L, et al. Parameter calibration of corncob based on DEM [J]. Advanced Powder Technology,2022,33(8):103699. doi: 10.1016/j.apt.2022.103699
    [14] PACHÓN-MORALES J, DO H, COLIN J, et al. DEM modelling for flow of cohesive lignocellulosic biomass powders: Model calibration using bulk tests [J]. Advanced Powder Technology,2019,30(4):732-750. doi: 10.1016/j.apt.2019.01.003
    [15] LI L Z, BEEMER R D, ISKANDER M. Granulometry of two marine calcareous sands [J]. Journal of Geotechnical and Geoenvironmental Engineering,2021,147(3):04020171. doi: 10.1061/(ASCE)GT.1943-5606.0002431
    [16] 李洪利, 吴文娟. 珊瑚礁砂颗粒形态研究 [J]. 土工基础,2023,37(4):667-671.

    LI Hongli, WU Wenjuan. Study on the particle morphology of the coral reef sand [J]. Soil Engineering and Foundation,2023,37(4):667-671.
    [17] 姜晓峰, 于维钊, 王继乾. 油水分离用天然材料表面化学研究进展 [J]. 化学通报,2021,84(4):290-304,321. doi: 10.14159/j.cnki.0441-3776.2021.04.001

    JIANG Xiaofeng, YU Weizhao, WANG Jiqian. The surface chemistry of natural materials for oil-water separation [J]. Chemistry,2021,84(4):290-304,321. doi: 10.14159/j.cnki.0441-3776.2021.04.001
    [18] 何义川, 史建新. 核桃壳力学特性分析与试验 [J]. 新疆农业大学学报,2009,32(6):70-75. doi: 10.3969/j.issn.1007-8614.2009.06.016

    HE Yichuan, SHI Jianxin. Analysis and experiment on mechanical characteristic of walnut shell [J]. Journal of Xinjiang Agricultural University,2009,32(6):70-75. doi: 10.3969/j.issn.1007-8614.2009.06.016
    [19] 黎展鹏, 刘凡一, 魏志强, 等. 茎瘤芥种子离散元模型参数标定 [J]. 中国农机化学报,2023,44(2):83-90. doi: 10.13733/j.jcam.issn.2095-5553.2023.02.012

    LI Zhanpeng, LIU Fanyi, WEI Zhiqiang, et al. Parameter calibration of discrete element model of stem mustard seeds [J]. Journal of Chinese Agricultural Mechanization,2023,44(2):83-90. doi: 10.13733/j.jcam.issn.2095-5553.2023.02.012
    [20] 陈永, 高晓勋, 金鑫, 等. 油莎豆排种离散元仿真参数标定与试验 [J]. 农业机械学报,2023,54(12):58-69. doi: 10.6041/j.issn.1000-1298.2023.12.005

    CHEN Yong, GAO Xiaoxun, JIN Xin, et al. Calibration and analysis of seeding parameters of cyperus esculentus seedsbased on discrete element simulation [J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(12):58-69. doi: 10.6041/j.issn.1000-1298.2023.12.005
    [21] 章广成, 向欣, 唐辉明. 落石碰撞恢复系数的现场试验与数值计算 [J]. 岩石力学与工程学报,2011,30(6):1266-1273.

    ZHANG Guangcheng, XIANG Xin, TANG Huiming. Field test and numerical calculation of restitution coefficient of rockfall collision [J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(6):1266-1273.
    [22] 王刚, 王倩, 薛忠, 等. 基于离散元法的椰糠颗粒建模及仿真参数标定 [J]. 热带作物学报,2021,42(9):2704-2710. doi: 10.3969/j.issn.1000-2561.2021.09.036

    WANG Gang, WANG Qian, XUE Zhong, et al. Modeling and simulation parameters calibration of coconut coir particles based on DEM [J]. Chinese Journal of Tropical Crops,2021,42(9):2704-2710. doi: 10.3969/j.issn.1000-2561.2021.09.036
    [23] 王万章, 刘婉茹, 袁玲合, 等. 基于EDEM的收获期小麦植株离散元参数标定 [J]. 河南农业大学学报,2021,55(1):64-72. doi: 10.16445/j.cnki.1000-2340.20210122.014

    WANG Wanzhang, LIU Wanru, YUAN Linghe, et al. Calibration of discrete element parameters of wheat plants at harvest period based on EDEM [J]. Journal of Henan Agricultural University,2021,55(1):64-72. doi: 10.16445/j.cnki.1000-2340.20210122.014
    [24] 彭才望, 周婷, 孙松林, 等. 基于堆积试验的黑水虻离散元仿真参数标定与分析 [J]. 浙江农业学报,2022,34(4):814-823. doi: 10.3969/j.issn.1004-1524.2022.04.18

    PENG Caiwang, ZHOU Ting, SUN Songlin, et al. Calibration of parameters of black soldier fly in discrete method simulation based on response angle of particle heap [J]. Acta Agriculturae Zhejiangensis,2022,34(4):814-823. doi: 10.3969/j.issn.1004-1524.2022.04.18
    [25] 葛越锋, 李小帅, 李春林, 等. 基于DEM的强制清种器清种性能研究 [J]. 拖拉机与农用运输车,2023,50(4):22-25.

    GE Yuefeng, LI Xiaoshuai, LI Chunlin, et al. Study on clearing performance of forced seed cleaner based on DEM [J]. Tractor & Farm Transporter,2023,50(4):22-25.
    [26] 郭娜, 姜新波, 纪欣鑫, 等. 青萝卜种子物性参数测定与离散元参数标定 [J]. 林业机械与木工设备,2023,51(9):25-32. doi: 10.3969/j.issn.2095-2953.2023.09.005

    GUO Na, JIANG Xinbo, JI Xinxin, et al. Determination of physical properties of green radish seeds and calibration of discrete element parameters [J]. Forestry Machinery & Woodworking Equipment,2023,51(9):25-32. doi: 10.3969/j.issn.2095-2953.2023.09.005
    [27] 张胜伟, 张瑞雨, 陈天佑, 等. 绿豆种子离散元仿真参数标定与排种试验 [J]. 农业机械学报,2022,53(3):71-79. doi: 10.6041/j.issn.1000-1298.2022.03.007

    ZHANG Shengwei, ZHANG Ruiyu, CHEN Tianyou, et al. Calibration of simulation parameters of mung bean seeds using discrete element method and verification of seed-metering test [J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(3):71-79. doi: 10.6041/j.issn.1000-1298.2022.03.007
    [28] 夏鹏, 李郁, 杨公波. 散粒物料堆积角离散元仿真研究 [J]. 起重运输机械,2015(2):107-110. doi: 10.3969/j.issn.1001-0785.2015.02.029

    XIA Peng, LI Yu, YANG Gongbo. Discrete element simulation study on pile angle of bulk material [J]. Hoisting and Conveying Machinery,2015(2):107-110. doi: 10.3969/j.issn.1001-0785.2015.02.029
  • 加载中
图(21) / 表(6)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  141
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-22
  • 修回日期:  2024-04-07
  • 录用日期:  2024-04-07
  • 网络出版日期:  2024-06-21
  • 刊出日期:  2025-02-20

目录

    /

    返回文章
    返回