CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于当量磨削层厚度的整体刀具容屑槽磨削功率模型

任磊 潘江涛 向道辉 马俊金 崔晓斌

任磊, 潘江涛, 向道辉, 马俊金, 崔晓斌. 基于当量磨削层厚度的整体刀具容屑槽磨削功率模型[J]. 金刚石与磨料磨具工程, 2025, 45(1): 67-74. doi: 10.13394/j.cnki.jgszz.2024.0003
引用本文: 任磊, 潘江涛, 向道辉, 马俊金, 崔晓斌. 基于当量磨削层厚度的整体刀具容屑槽磨削功率模型[J]. 金刚石与磨料磨具工程, 2025, 45(1): 67-74. doi: 10.13394/j.cnki.jgszz.2024.0003
REN Lei, PAN Jiangtao, XIANG Daohui, MA Junjin, CUI Xiaobin. Grinding power model for flute grinding of solid tools based on equivalent chip thickness[J]. Diamond & Abrasives Engineering, 2025, 45(1): 67-74. doi: 10.13394/j.cnki.jgszz.2024.0003
Citation: REN Lei, PAN Jiangtao, XIANG Daohui, MA Junjin, CUI Xiaobin. Grinding power model for flute grinding of solid tools based on equivalent chip thickness[J]. Diamond & Abrasives Engineering, 2025, 45(1): 67-74. doi: 10.13394/j.cnki.jgszz.2024.0003

基于当量磨削层厚度的整体刀具容屑槽磨削功率模型

doi: 10.13394/j.cnki.jgszz.2024.0003
基金项目: 国家自然科学基金青年项目(52005165); 河南省科技攻关项目(242102221016)。
详细信息
    作者简介:

    通信作者:任磊,男,1991年生,博士、讲师。主要研究方向:高性能复杂刀具精密加工技术。E-mail:renlei@hpu.edu.cn

  • 中图分类号: TG71; TG74; TG58; TG593

Grinding power model for flute grinding of solid tools based on equivalent chip thickness

  • 摘要: 磨削功率与整体刀具容屑槽的磨削质量密切相关。提出一种基于当量磨削层厚度的整体刀具容屑槽磨削功率模型,将砂轮离散化为一组等厚度的砂轮薄片,由砂轮与刀具间的瞬时接触线计算各砂轮薄片的接触弧长;再通过引入磨削接触区形状系数计算沿砂轮宽度方向逐渐变化的当量磨削深度和当量进给速度,得到各砂轮薄片对应的当量磨削层厚度;在此基础上建立容屑槽磨削功率模型,并通过磨削实验对模型进行验证。结果表明:模型的功率预测值与测量值间的最大相对误差 < 15.0%;沿砂轮宽度方向的最大当量磨削层厚度和最大单位宽度磨削功率存在于砂轮边缘处,将导致砂轮宽度方向上的非均匀磨损。

     

  • 图  1  砂轮相对刀具的初始位置

    Figure  1.  Initial position of grinding wheel relative to cutting tool

    图  2  砂轮回转面的几何定义

    Figure  2.  Geometric definition of surface of revolution of grinding wheel

    图  3  砂轮与容屑槽的瞬时接触线

    Figure  3.  Instantaneous contact line between grinding wheel and flute

    图  4  砂轮与刀具的接触弧

    Figure  4.  Arc of contact between grinding wheel and cutting tool

    图  5  砂轮离散化为一组砂轮薄片

    Figure  5.  Grinding wheel discretized into a set of wheel slices

    图  6  容屑槽的横截面廓形

    Figure  6.  Cross-sectional profile of flute

    图  7  ANCA MX7五轴数控工具磨床

    Figure  7.  ANCA MX7 five-axis CNC tool grinder

    图  8  实验用1A1砂轮的几何形状

    Figure  8.  Geometry of 1A1 grinding wheel used in experiments

    图  9  磨削功率变化曲线

    Figure  9.  Variation curve of grinding power

    图  10  各组实验的实测与预测磨削功率

    Figure  10.  Measured and predicted grinding power in each experiment

    图  11  各组实验预测磨削功率的相对误差

    Figure  11.  Relative error of predicted grinding power in each experiment

    图  12  砂轮宽度方向上的当量磨削层厚度和单位宽度磨削功率

    Figure  12.  Equivalent chip thickness and grinding power per unit width along grinding wheel width

    表  1  容屑槽几何参数

    Table  1.   Geometric parameters of flute

    容屑槽几何参数数值
    螺旋角 β / (°)30
    径向前角 γ / (°)5
    芯径 dc / mm4
    槽宽 φ / (°)150
    下载: 导出CSV

    表  2  磨削加工实验参数

    Table  2.   Grinding parameters in experiments

    实验组编号 砂轮线速度
    vs / (m·s−1)
    工件轴向进给速度
    va / (mm·min−1)
    偏置
    Δax / mm
    1 18 60 0
    2 18 90 0
    3 24 60 0
    4 24 90 0
    5 18 70 1.2
    6 22 90 0
    7 20 90 1.2
    8 24 70 0
    9 18 80 0
    10 22 60 1.2
    11 20 60 0
    12 24 80 1.2
    13 18 60 0.8
    14 22 80 0.4
    15 20 80 0.8
    16 24 60 0.4
    17 18 90 0.4
    18 22 70 0.8
    19 20 70 0.4
    20 24 90 0.8
    下载: 导出CSV
  • [1] 宋铁军, 周志雄, 李伟, 等. 硬质合金立铣刀螺旋槽磨削表面粗糙度模型研究 [J]. 机械工程学报,2017,53(17):185-192. doi: 10.3901/JME.2017.17.185

    SONG Tiejun, ZHOU Zhixiong, LI Wei, et al. Roughness model for helical flute of cemented carbide end mill under grinding [J]. China Mechanical Engineering,2017,53(17):185-192. doi: 10.3901/JME.2017.17.185
    [2] 毕雪峰, 杨承三, 景璐璐. 深切缓进给磨削烧伤实验研究 [J]. 上海理工大学学报,2014,36(3):303-306. doi: 10.13255/j.cnki.jusst.2014.03.018

    BI Xuefeng, YANG Chengsan, JING Lulu. Experimental research on grinding burn in creep feed grinding [J]. Journal of University of Shanghai for Science and Technology,2014,36(3):303-306. doi: 10.13255/j.cnki.jusst.2014.03.018
    [3] MENG Q Y, GUO B, ZHAO Q L, et al. Modelling of grinding mechanics: A review [J]. Chinese Journal of Aeronautics,2023,36(7):25-39. doi: 10.1016/j.cja.2022.10.006
    [4] 宋铁军, 周志雄, 李伟, 等. 硬质合金刀具螺旋槽缓进给磨削力研究 [J]. 中国机械工程,2014,25(9):1153-1158. doi: 10.3969/j.issn.1004-132X.2014.09.004

    SONG Tiejun, ZHOU Zhixiong, LI Wei, et al. Research on grinding forces of creep feed grinding cemented carbide tool helical grooves [J]. China Mechanical Engineering,2014,25(9):1153-1158. doi: 10.3969/j.issn.1004-132X.2014.09.004
    [5] 赵延军, 钱灌文, 刘权威, 等. 砂轮刚性对磨削性能及产品加工质量的影响 [J]. 金刚石与磨料磨具工程,2017,37(1):56-60. doi: 10.13394/j.cnki.jgszz.2017.1.0011

    ZHAO Yanjun, QIAN Guanwen, LIU Quanwei, et al. Influence of wheel stiffness on grinding performance and product machining quality [J]. Diamond & Abrasives Engineering,2017,37(1):56-60. doi: 10.13394/j.cnki.jgszz.2017.1.0011
    [6] SALATA M. The analysis of the influence of technological parameters on the grinding temperature in the single-pass grinding process of solid carbide end mill flutes [J]. Advances in Science and Technology-Research Journal,2022,16(1):190-202. doi: 10.12913/22998624/143483
    [7] DE PAYREBRUNE K M, KRÖGER M. Dynamical aspects in modeling long cantilevering workpieces in tool grinding [J]. Journal of Sound and Vibration,2015,355:407-417. doi: 10.1016/j.jsv.2015.06.027
    [8] DE PAYREBRUNE K M, KRÖGER M. An integrated model of tool grinding: challenges, chances and limits of predicting process dynamics [J]. Production Engineering,2016,10:421-432. doi: 10.1007/s11740-016-0687-2
    [9] DENKENA B, DITTRICH M A, BÖß V, et al. Self-optimizing process planning for helical flute grinding [J]. Production Engineering,2019,13:599-606. doi: 10.1007/s11740-019-00908-0
    [10] UHLMANN E, GÜLZOW B, MUTHULINGAM A. Optimising the grinding wheel design for flute grinding processes utilising numerical analysis of the complex contact conditions [J]. Journal of Machine Engineering,2020,20(3):85-94. doi: 10.36897/jme/119641
    [11] DITTRICH M A, BÖß V, WICHMANN M, et al. Simulation-based compensation of deflection errors in helical flute grinding [J]. CIRP Journal of Manufacturing Science and Technology,2020,28:136-143. doi: 10.1016/j.cirpj.2019.11.002
    [12] JEYARAJ D, LAHMANN H W, WELZEL F. A data-driven model to predict dressing interval during a multi-flute end mill grooving process using a multilayered diamond grinding wheel [J]. Procedia CIRP,2023,117:353-358. doi: 10.1016/j.procir.2023.03.060
    [13] WIESENER F, BERGMANN B, WICHMANN M, et al. Modeling of heat transfer in tool grinding for multiscale simulations [J]. Procedia CIRP,2023,117:269-274. doi: 10.1016/j.procir.2023.03.046
    [14] REN L, XU J, ZHANG XM, et al. Determination of wheel position in flute grinding of cylindrical end-mills considering tolerances of flute parameters [J]. Journal of Manufacturing Processes,2022,74:63-74. doi: 10.1016/j.jmapro.2021.11.065
    [15] MALKIN S, GUO CS. Grinding technology: Theory and application of machining with abrasives [M]. New York: Industrial Press, 2008.
    [16] CHEN X, ROWE W B, ALLANSON D R, et al. A grinding power model for selection of dressing and grinding conditions [J]. Journal of Manufacturing Science and Engineering,1999,121(4):632-637. doi: 10.1115/1.2833084
    [17] 任磊, 韩家祥, 张新民, 等. 圆弧投影法在圆柱立铣刀容屑槽刃磨中的应用 [J]. 机械工程学报,2023,59(17):335-348. doi: 10.3901/JME.2023.17.335

    REN Lei, HAN Jiaxiang, ZHANG Xinmin, et al. Application of circular arc projection method in flute grinding of cylindrical end-mills [J]. Journal of Mechanical Engineering,2023,59(17):335-348. doi: 10.3901/JME.2023.17.335
    [18] LIU X L, CHEN Z, JI W, et al. A compensation method for wheel wear in solid cutting tool groove grinding based on iteration algorithm [J]. The International Journal of Advanced Manufacturing Technology,2020,107:3389-3399. doi: 10.1007/s00170-020-05269-y
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  28
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-04
  • 修回日期:  2024-03-04
  • 录用日期:  2024-03-13
  • 网络出版日期:  2025-03-24
  • 刊出日期:  2025-02-20

目录

    /

    返回文章
    返回