CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于灰色关联分析的PMMA工件磁性复合流体抛光工艺参数优化

王有良 高熙淳 张文娟

王有良, 高熙淳, 张文娟. 基于灰色关联分析的PMMA工件磁性复合流体抛光工艺参数优化[J]. 金刚石与磨料磨具工程, 2025, 45(1): 134-142. doi: 10.13394/j.cnki.jgszz.2023.0282
引用本文: 王有良, 高熙淳, 张文娟. 基于灰色关联分析的PMMA工件磁性复合流体抛光工艺参数优化[J]. 金刚石与磨料磨具工程, 2025, 45(1): 134-142. doi: 10.13394/j.cnki.jgszz.2023.0282
WANG Youliang, GAO Xichun, ZHANG Wenjuan. Optimization of magnetic compound fluid polishing process parameters for PMMA workpieces based on grey relational analysis[J]. Diamond & Abrasives Engineering, 2025, 45(1): 134-142. doi: 10.13394/j.cnki.jgszz.2023.0282
Citation: WANG Youliang, GAO Xichun, ZHANG Wenjuan. Optimization of magnetic compound fluid polishing process parameters for PMMA workpieces based on grey relational analysis[J]. Diamond & Abrasives Engineering, 2025, 45(1): 134-142. doi: 10.13394/j.cnki.jgszz.2023.0282

基于灰色关联分析的PMMA工件磁性复合流体抛光工艺参数优化

doi: 10.13394/j.cnki.jgszz.2023.0282
基金项目: 国家自然科学基金(52265056); 甘肃省科技基金计划项目(21JR7RA228); 兰州理工大学红柳优秀青年人才支持计划(07/062004)。
详细信息
    作者简介:

    通信作者:王有良,男,1986年生,副教授、硕士生导师。主要研究方向:多场(磁场、电场、化学场等)辅助精密超精密加工等。E-mail:wangyouliang20@163.com

  • 中图分类号: TG58; TG73

Optimization of magnetic compound fluid polishing process parameters for PMMA workpieces based on grey relational analysis

  • 摘要: 针对磁性复合流体抛光PMMA工件取得最佳表面质量和最大加工效率时工艺参数不同的问题,基于灰色关联分析的工艺参数优化方法,设计3因素4水平正交试验,分析磁感应强度、羰基铁粉粒径、磨粒粒径对磁性复合流体抛光性能的影响。结果表明:优化后得到的磁性复合流体抛光PMMA工件的最佳方案为:磁感应强度,0.50 T;羰基铁粉粒径,7 μm;磨粒粒径,3 μm;使用优化后的工艺参数抛光, 工件的表面粗糙度为14 nm,材料去除率为2.088×108 $ \mathrm{\mu } $μm3/min,提高了3.5%;通过灰色关联分析优化后获得的工艺参数,既能满足工件高表面质量的抛光要求,又能显著提高磁性复合流体抛光的材料去除率。

     

  • 图  1  抛光原理图

    Figure  1.  Polishing principle diagram

    图  2  实验平台

    Figure  2.  Experimental platform

    图  3  抛光区的测量点示意图

    Figure  3.  Schematic diagram of measurement points in polishing zone

    图  4  各参数在不同水平下的Ra%平均值

    Figure  4.  Ra% average values of each parameter at different levels

    图  5  各参数在不同水平下的RMRR平均值

    Figure  5.  RMRR average values of each parameter at different levels

    图  6  测力试验装置

    Figure  6.  Force testing device

    图  7  不同磁感应强度下的MCF正压力

    Figure  7.  Normal pressures of MCF under different magnetic induction intensities

    图  8  不同粒径羰基铁粉室温下的磁滞回线

    Figure  8.  Hysteresis loop of carbonyl iron powder with different particle sizes at room temperature

    图  9  不同磨粒粒径下的材料去除机制

    Figure  9.  Removal mechanism of materials under different abrasive particle sizes

    图  10  优化前后工件表面的光学形貌

    Figure  10.  Optical morphology of workpiece surface before and after optimization

    图  11  优化前后工件的轮廓曲线

    Figure  11.  Contour curves of workpiece before and after optimization

    表  1  MCF抛光液组成

    Table  1.   Compositions of MCF slurry

    成分参数取值
    水基磁流体(MF)平均粒径 d / nm10
    质量分数 ω1 / %45
    羰基铁粉(CIP)粒径 DCIP / μm1,3,5,7
    质量分数 ω2 / %40
    磨料(α-Al2O3粒径 DAP / μm1,3,5,7
    质量分数 ω3 / %12
    α-纤维素质量分数 ω4 / %3
    下载: 导出CSV

    表  2  试验参数

    Table  2.   Experimental parameters

    参数类型或取值
    工件尺寸(长×宽×高)70 mm × 70 mm × 1 mm
    永磁铁材料钕铁硼N52
    永磁铁尺寸ϕ20 mm ×10 mm
    磁场强度 B / T0.50
    永磁铁偏心距 r / mm4
    永磁铁转速 nm / (r·min−1)600
    MCF载液板转速 nc / (r·min−1)500
    MCF供应量 V / mL1
    加工间隙 Δ / mm1
    抛光时间 t1 / min10
    下载: 导出CSV

    表  3  正交试验因素及水平表

    Table  3.   Orthogonal experimental factors and levels table

    水平因素
    永磁铁磁感应强度
    B / T
    羰基铁粉粒径
    DCIP / μm
    磨粒粒径
    DAP / μm
    10.2011
    20.3033
    30.4055
    40.5077
    下载: 导出CSV

    表  4  正交试验方案及结果

    Table  4.   Orthogonal experimental plan and results

    序号 加工参数 Ra% RMRR / ($ \mathrm{\mu } $μm3·min−1)
    B / T DCIP / μm DAP / μm
    1 0.20 1 1 72.43 1.383×108
    2 0.20 3 3 74.74 1.456×108
    3 0.20 5 5 76.99 1.477×108
    4 0.20 7 7 75.86 1.530×108
    5 0.30 1 3 81.92 1.533×108
    6 0.30 3 1 83.44 1.518×108
    7 0.30 5 7 82.53 1.639×108
    8 0.30 7 5 83.68 1.651×108
    9 0.40 1 5 84.91 1.705×108
    10 0.40 3 7 85.27 1.768×108
    11 0.40 5 1 86.65 1.708×108
    12 0.40 7 3 89.92 1.776×108
    13 0.50 1 7 86.71 1.949×108
    14 0.50 3 5 91.36 1.958×108
    15 0.50 5 3 93.57 1.953×108
    16 0.50 7 1 93.33 2.017×108
    下载: 导出CSV

    表  5  Ra%的正交试验结果极差分析表

    Table  5.   Range analysis table of Ra% orthogonal experimental results

    ki 加工参数
    B DCIP DAP
    k1 75.005 00 81.492 50 83.962 50
    k2 82.892 50 83.702 50 85.037 50
    k3 86.687 50 84.935 00 84.235 00
    k4 91.242 50 85.697 50 82.592 50
    极差 R 16.237 50 4.205 00 2.445 00
    下载: 导出CSV

    表  6  RMRR正交试验结果的极差分析表

    Table  6.   Range analysis table of RMRR orthogonal experimental results

    ki 加工参数
    B DCIP DAP
    k1 1.461 50×108 1.642 50×108 1.656 50×108
    k2 1.585 25×108 1.675 00×108 1.679 50×108
    k3 1.739 25×108 1.694 25×108 1.697 75×108
    k4 1.969 25×108 1.743 50×108 1.721 50×108
    极差 R 0.507 75×108 0.101 00×108 0.065 00×108
    下载: 导出CSV

    表  7  灰色关联系数及灰色关联度

    Table  7.   Grey relational coefficient and grey relational degree

    序号 灰色关联系数 $ \xi $ 灰色关联度 $\gamma $
    Ra% RMRR
    1 0.333 33 0.333 33 0.333 33
    2 0.359 52 0.361 05 0.360 29
    3 0.389 32 0.369 89 0.379 61
    4 0.373 76 0.394 28 0.384 02
    5 0.475 70 0.395 76 0.435 73
    6 0.510 63 0.388 48 0.449 55
    7 0.489 13 0.456 12 0.472 62
    8 0.516 62 0.464 13 0.490 37
    9 0.549 66 0.503 97 0.526 82
    10 0.560 15 0.560 07 0.560 11
    11 0.604 35 0.506 39 0.555 37
    12 0.743 32 0.568 10 0.655 71
    13 0.606 43 0.823 38 0.714 90
    14 0.827 07 0.843 09 0.835 08
    15 1.000 00 0.832 02 0.916 01
    16 0.977 80 1.000 00 0.988 90
    下载: 导出CSV

    表  8  因素各水平下的平均灰色关联度

    Table  8.   Average grey relational degree of factors at different levels

    因素水平
    1234
    B0.364 310.462 070.574 500.863 72
    DCIP0.502 690.551 260.580 900.629 75
    DAP0.581 790.591 930.557 970.532 91
    下载: 导出CSV
  • [1] 王承遇, 李松基, 陶瑛, 等. 超光滑超精密玻璃抛光新技术 [J]. 玻璃,2009,36(10):33-37. doi: 10.3969/j.issn.1003-1987.2009.10.012

    WANG Chengyu, LI Songji, TAO Ying, et al. New super-smooth and super-precision polishing technology for glass surface [J]. Glass,2009,36(10):33-37. doi: 10.3969/j.issn.1003-1987.2009.10.012
    [2] 张韬, 何建国, 黄文, 等. 机械轴与虚拟轴复合的磁流变抛光 [J]. 光学精密工程,2021,29(2):286-296. doi: 10.37188/OPE.20212902.0286

    ZHANG Tao, HE Jianguo, HUANG Wen, et al. Magnetorheological finishing method that combines mechanical and virtual axes [J]. Optics and Precision Engineering,2021,29(2):286-296. doi: 10.37188/OPE.20212902.0286
    [3] 袁巨龙, 张飞虎, 戴一帆, 等. 超精密加工领域科学技术发展研究 [J]. 机械工程学报,2010,46(15):161-177. doi: 10.3901/JME.2010.15.161

    YUAN Julong, ZHANG Feihu, DAI Yifan, et al. Development research of science and technologies in ultra-precision machining field [J]. Chinese Journal of Mechanical Engineering,2010,46(15):161-177. doi: 10.3901/JME.2010.15.161
    [4] 康桂文. 磁流变抛光技术的研究现状及其发展 [J]. 机床与液压,2008,36(3):173-175, 182. doi: 10.3969/j.issn.1001-3881.2008.03.058

    KANG Guiwen. Research and development of magnetorheological finishing [J]. Machine Tool & Hydraulics,2008,36(3):173-175, 182. doi: 10.3969/j.issn.1001-3881.2008.03.058
    [5] 赵卫, 豆立博, 刘玲. 磁流变抛光技术在SiC晶片加工工艺中的应用研究 [J]. 价值工程,2018,37(11):222-223. doi: 10.14018/j.cnki.cn13-1085/n.2018.11.114

    ZHAO Wei, DOU Lifu, LIU Ling. Application research on magnetorheological finishing in the SiC wafer processing [J]. Value Engineering,2018,37(11):222-223. doi: 10.14018/j.cnki.cn13-1085/n.2018.11.114
    [6] 李改灵. 光学材料磨削加工亚表面损伤测量的理论与实验研究 [D]. 长沙: 国防科学技术大学, 2006.

    LI Gailing. Theoretical and experimental research on the measurement of grinding subsurface damages for optical materials [D]. Changsha: National University of Defense Technology, 2006.
    [7] SHIMADA K, AKAGAMI Y, KAMIYAMA S, et al. New microscopic polishing with magnetic compound fluid (MCF) [J]. Journal of Intelligent Material Systems and Structures,2002,13(7/8):405-408. doi: 10.1106/104538902026159
    [8] 田可, 郭会茹, 吴勇波, 等. 旋转磁场下非球面工件的磁性混合流体抛光 [J]. 金刚石与磨料磨具工程,2022,42(4):495-503. doi: 10.13394/j.cnki.jgszz.2021.0211

    TIAN Ke, GUO Huiru, WU Yongbo, et al. Magnetic compound fluid polishing of aspheric workpiece under rotating magnetic field [J]. Diamond & Abrasives Engineering,2022,42(4):495-503. doi: 10.13394/j.cnki.jgszz.2021.0211
    [9] 张军锋, 史耀耀, 蔺小军, 等. 基于灰色关联分析的叶片砂带抛光参数优化 [J]. 计算机集成制造系统,2017,23(4):806-814. doi: 10.13196/j.cims.2017.04.015

    ZHANG Junfeng, SHI Yaoyao, LIN Xiaojun, et al. Parameters optimization in belt polishing process of blade based on grey relational analysis [J]. Computer Integrated Manufacturing Systems,2017,23(4):806-814. doi: 10.13196/j.cims.2017.04.015
    [10] BAN X, DUAN T, TIAN Z, et al. Process optimization of 4H-SiC chemical mechanical polishing based on grey relational analysis [J]. Semiconductor Science and Technology,2023,38(7):075014. doi: 10.1088/1361-6641/acd9e5
    [11] 周虎, 李中会. 基于灰色系统理论的磁流变抛光工艺参数优化研究 [J]. 制造技术与机床,2010(5):89-93. doi: 10.3969/j.issn.1005-2402.2010.05.030

    ZHOU Hu, LI Zhonghui. Research on optimizing the processing parameters for magnetorheological finishing based on gray theory [J]. Manufacturing Technology & Machine Tool,2010(5):89-93. doi: 10.3969/j.issn.1005-2402.2010.05.030
    [12] 史丽晨, 刘亚雄, 史炜椿, 等. 基于灰色关联分析的GH2132线材高精度切削参数优化 [J]. 表面技术,2022,51(11):373-384. doi: 10.16490/j.cnki.issn.1001-3660.2022.11.035

    SHI Lichen, LIU Yaxiong, SHI Weichun, et al. Optimization of high-precision cutting parameters of GH2132 wire based on grey relational analysis [J]. Surface Technology,2022,51(11):373-384. doi: 10.16490/j.cnki.issn.1001-3660.2022.11.035
    [13] SHIMADA K, WU Y B, Wong Y C. Effect of magnetic cluster and magnetic field on polishing using magnetic compound fluid (MCF) [J]. Journal of Magnetism and Magnetic Materials,2003,262(2):242-247. doi: 10.1016/S0304-8853(02)01497-X
    [14] FENG M, WU Y B, WANG Y LI, et al. Effect of the components of magnetic compound fluid (MCF) slurry on polishing characteristics in aspheric-surface finishing with the doughnut-shaped MCF tool [J]. Precision Engineering,2020,65:216-229. doi: 10.1016/j.precisioneng.2020.04.021
    [15] 姜晨, 刘剑, 魏久祥, 等. h形磁性复合流体抛光工具设计及工艺试验 [J]. 光学精密工程,2022,30(12):1452-1461. doi: 10.37188/OPE.20223012.1452

    JIANG Chen, LIU Jian, WEI Jiuxiang, et al. Design and process test of h-shaped magnetic composite fluid polishing tool [J]. Optics and Precision Engineering,2022,30(12):1452-1461. doi: 10.37188/OPE.20223012.1452
    [16] 王道明, 侯友夫, 田祖织, 等. 颗粒尺寸及温度对羰基铁粉磁化性能的影响 [J]. 功能材料,2014,45(19):19006-19009. doi: 10.3969/j.issn.1001-9731.2014.19.002

    WANG Daoming, HOU Youfu, TIAN Zuzhi, et al. Effect of particle size and temperature on magnetization properties of carbonyl iron powder [J]. Journal of Functional Materials,2014,45(19):19006-19009. doi: 10.3969/j.issn.1001-9731.2014.19.002
    [17] SIDPARA A, JAIN V K. Nano–level finishing of single crystal silicon blank using magnetorheological finishing process [J]. Tribology International,2012,47:159-166. doi: 10.1016/j.triboint.2011.10.008
    [18] 朱斓瑛, 赵越, 戴玉, 等. 灰色关联度分析模型的特征与应用 [J]. 科学咨询(科技·管理),2019(8):79.

    ZHU Lanying, ZHAO Yue, DAI Yu, et al. Characteristics and applications of grey relational degree analysis model [J]. Technology & Management,2019(8):79.
    [19] 邓家云. 单晶SiC电芬顿化学机械抛光机理研究 [D]. 广州: 广东工业大学, 2022.

    DENG Jiayun. Mechanism of electro-fenton chemical mechanica polishing for single crystal SiC [D]. Guangzhou: Guangdong University of Technology, 2022.
    [20] DENG J L. Introduction to grey system theory [J]. The Journal of Grey System,1989,1(1):1-24. doi: 10.1007/978-3-642-16158-2_1
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  27
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-28
  • 修回日期:  2024-03-05
  • 录用日期:  2024-03-13
  • 网络出版日期:  2025-03-24
  • 刊出日期:  2025-02-20

目录

    /

    返回文章
    返回