Characterization of flow field for chemical-mechanical polishing of silicon carbide under ultrasonic action
-
摘要: 针对目前碳化硅抛光效率低、表面质量差等加工难题,采用超声辅助化学机械抛光加工工艺对碳化硅表面进行光滑无损化抛光加工。为探究超声辅助对化学机械抛光流场的影响,本文以超声振动下抛光流场中的流场特性为研究对象,基于流体动力学方程、能量守恒方程,对超声作用下抛光流场特性进行分析;采用有限元分析方法探究不同超声频率、振幅、液膜厚度作用下抛光流场内的速度、压力等主要影响抛光效率的因素。结果表明:超声振动对抛光流场具有明显的促进作用,引导流场产生明显横向剪切流提升整体抛光效率;不同膜厚下超声对流场的作用效果并不相同,分析仿真结果得出,随着液膜厚度从50μm减小到30μm,流场最大速度从84.28m/s增大到105.68m/s, 最大压力从199.2MPa增大到581.9MPa,可知液膜厚度越小越有利于抛光效率的提高。
关键词 超声辅助;碳化硅;流体动力学仿真;化学机械抛光
中图分类号 TG580.692+2Abstract: To overcome the challenges of low polishing efficiency and poor surface quality in silicon carbide polishing, researchers have employed an ultrasonic-assisted chemical mechanical polishing (CMP) process. This study focuses on investigating the impact of ultrasonic assistance on the flow field during the polishing process. The goal is to achieve smooth and damage-free polishing of silicon carbide surfaces. This study involves analyzing the properties of the polishing flow field under ultrasonic vibration. Fluid dynamics equations and energy conservation principles are utilized to understand these characteristics. Additionally, finite element analysis is employed to investigate the key factors that influence polishing efficiency in the flow field, including ultrasonic frequencies, amplitudes, and film thicknesses. The results show that ultrasonic vibration has a significant promoting effect on the polishing flow field, guiding the flow field to produce significant lateral shearing flow to enhance the overall polishing efficiency. The effects of ultrasonic action on the flow field vary with different film thicknesses. Analysis of simulation results indicates that as the film thickness decreases from 50μm to 30μm, the maximum velocity of the flow field increases from 84.28m/s to 105.68m/s, and the maximum pressure increases from 199.2MPa to 581.9MPa. It is evident that a smaller film thickness is more conducive to improving the polishing efficiency.
点击查看大图
计量
- 文章访问数: 250
- HTML全文浏览量: 74
- 被引次数: 0