CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石纳米流体重力热管换热性能试验研究

杨勇 陈佳佳 刘松炎 袁冬冬 仝子杰

杨勇, 陈佳佳, 刘松炎, 袁冬冬, 仝子杰. 金刚石纳米流体重力热管换热性能试验研究[J]. 金刚石与磨料磨具工程, 2024, 44(6): 825-833. doi: 10.13394/j.cnki.jgszz.2023.0257
引用本文: 杨勇, 陈佳佳, 刘松炎, 袁冬冬, 仝子杰. 金刚石纳米流体重力热管换热性能试验研究[J]. 金刚石与磨料磨具工程, 2024, 44(6): 825-833. doi: 10.13394/j.cnki.jgszz.2023.0257
YANG Yong, CHEN Jiajia, LIU Songyan, YUAN Dongdong, TONG Zijie. Experimental investigation on heat transfer performance diamond nanofluid gravity heat pipe[J]. Diamond & Abrasives Engineering, 2024, 44(6): 825-833. doi: 10.13394/j.cnki.jgszz.2023.0257
Citation: YANG Yong, CHEN Jiajia, LIU Songyan, YUAN Dongdong, TONG Zijie. Experimental investigation on heat transfer performance diamond nanofluid gravity heat pipe[J]. Diamond & Abrasives Engineering, 2024, 44(6): 825-833. doi: 10.13394/j.cnki.jgszz.2023.0257

金刚石纳米流体重力热管换热性能试验研究

doi: 10.13394/j.cnki.jgszz.2023.0257
基金项目: 国家自然科学基金资助项目(51905275);江苏省基础研究计划(自然科学基金)资助项目(BK20190752);江苏省高等学校自然科学研究面上项目(19KJB460020);江苏省精密与微细制造技术重点实验室开放基金项目资助。
详细信息
    通讯作者:

    陈佳佳,女,1988年生,博士,副教授。主要研究方向:热管砂轮强化换热技术。E-mail:Jiajiachen@njfu.edu.cn

  • 中图分类号: TG74; TG580

Experimental investigation on heat transfer performance diamond nanofluid gravity heat pipe

  • 摘要: 热管是通过工质在管内的气液相态变化实现热量高效传递的换热元件,其中重力热管具有结构简单、工作稳定、成本低廉等优势,被广泛应用于工业生产的各个换热场合,尤其在节能、新能源的开发和利用方面发挥了显著的作用。本文中基于金刚石纳米流体开展重力热管的换热特性研究,探索特定条件下重力热管的最优工作参数。研究不同的纳米颗粒质量分数(0.5%~2.0%)、充液率(8%~26%)、纳米颗粒粒径(20和50 nm)、电源加热功率(3~18 W)和有无吸液芯等对金刚石纳米流体重力热管换热性能的影响,结果表明:当纳米颗粒质量分数为2.0%时,重力热管换热性能最佳,总热阻相比最大值降低28.4%~64.7%;当充液率为14%时,换热性能最好,总热阻相比最大值降低6.1%~8.5%;当选用粒径为50 nm的金刚石纳米流体时,重力热管换热性能整体优于20 nm的;当电源加热功率提高时,换热性能随之提升;当选用吸液芯重力热管时,其换热性能整体优于无吸液芯重力热管的换热性能。

     

  • 图  1  重力热管换热试验平台

    Figure  1.  Platform for heat transfer performance analysis of gravity heat pipe

    图  2  金刚石纳米颗粒

    Figure  2.  Diamond nano-particle

    图  3  不同加热功率下的温度信号(金刚石粒径20 nm)

    Figure  3.  Temperature signals under different heating powers(with diamond nano-particle size of 20 nm)

    图  4  不同加热功率下的温度信号(金刚石粒径50 nm)

    Figure  4.  Temperature signals under different heating powers(with diamond nano-particle size of 50 nm)

    图  5  加热功率对重力热管热阻的影响

    Figure  5.  Influence of heating power on thermal resistance of gravity heat pipe

    图  6  不同充液率下的温度信号(金刚石粒径20 nm)

    Figure  6.  Temperature signals under different filling ratios (with diamond nano-particle size of 20 nm)

    图  7  不同充液率下的温度信号(金刚石粒径50 nm)

    Figure  7.  Temperature signals under different filling ratios (with diamond nano-particle size of 50 nm)

    图  8  充液率对重力热管热阻的影响

    Figure  8.  Influence of filling ratio on the thermal resistance of gravity heat pipe

    图  9  不同纳米颗粒质量分数下的温度信号(金刚石粒径20 nm)

    Figure  9.  Temperature signals under different mass fractions of nano-particle (with diamond nano-particle size of 20 nm)

    图  10  不同纳米颗粒质量分数下的温度信号(金刚石粒径50 nm)

    Figure  10.  Temperature signals under different mass fractions of nano-particle (with diamond nano-particle size of 50 nm)

    图  11  纳米颗粒质量分数对重力热管热阻的影响

    Figure  11.  Influence of nano-particle mass fractions on thermal resistance of gravity heat pipe

    图  12  不同纳米颗粒粒径下的温度信号

    Figure  12.  Temperature signals under different nano-particle sizes

    图  13  纳米颗粒粒径对重力热管热阻的影响

    Figure  13.  Influence of nano-particle size on thermal resistance of gravity heat pipe

    图  14  有无吸液芯情况下重力热管的温度信号(金刚石粒径20 nm)

    Figure  14.  Temperature signals of gravity heat pipe with and without wick (with diamond nano-particle size of 20 nm)

    图  15  有无吸液芯情况下重力热管的温度信号(金刚石粒径50 nm)

    Figure  15.  Temperature signals of gravity heat pipe with and without wick (with diamond nano-particle size of 50 nm)

    图  16  有无吸液芯对重力热管热阻的影响

    Figure  16.  Influence of wick on thermal resistance of gravity heat pipe

    表  1  换热试验参数

    Table  1.   Heat transfer test parameters

    参数取值
    加热功率 Q / W3,6,9,12,15,18
    充液率 φ / %8,14,20,26
    纳米颗粒质量分数 ωnp / %0.5,1.0,1.5,2.0
    纳米颗粒粒径 rnp / nm20,50
    环境温度 θ' / ℃20
    热管直径 d / mm8
    下载: 导出CSV
  • [1] 陈家绪. 重力热管传热特性的数值模拟与实验研究及热管式空预器优化设计 [D]. 太原: 太原理工大学, 2022.

    CHEN Jiaxu. Numerical simulation and experimental research on heat transfer characteristics of gravity heat pipes and optimization design of heat pipe air preheaters [D]. Taiyuan: Taiyuan University of Technology, 2022.
    [2] 于涛. 重力热管的制造及传热性能测试 [D]. 济南: 山东大学, 2008.

    YU Tao. Manufacturing and heat transfer performance testing of gravity heat pipes [D]. Jinan: Shandong University, 2008.
    [3] 郭浩, 彭家略, 尤天伢,等. 工质对重力热管壁温与传热特性的影响 [J]. 工程热物理学报,2021,42(11):2893-2898.

    GUO Hao, PENG Jialue, YOU Tianya, et al. Effect of working fluids on wall temperature and heat transfer characteristics of gravity heat pipe [J]. Journal of Engineering Thermophysics,2021,42(11):2893-2898.
    [4] 韩振兴, 王冬骁, 王飞,等. 重力热管冷凝段运行特征的可视化实验研究 [J]. 化工学报,2014,65(8):2934-2939. doi: 10.3969/j.issn.0438-1157.2014.08.012

    HAN Zhenxing, WANG Dongxiao, WANG Fei, et al. Visual experimental study on operation characteristics of condensation segment of gravity-assisted heat pipe [J]. Journal of Chemical Engineering,2014,65(8):2934-2939. doi: 10.3969/j.issn.0438-1157.2014.08.012
    [5] 金志浩, 陈玉润, 韩振南. 氧化石墨烯-水重力热管传热性能实验研究 [J]. 化学工程,2022,50(12):38-41,71. doi: 10.3969/j.issn.1005-9954.2022.12.008

    JIN Zhihao, CHEN Yurun, HAN Zhennan. Experimental study on heat transfer performance of graphene oxide-water gravity heat pipe [J]. Chemical Engineering (China),2022,50(12):38-41,71. doi: 10.3969/j.issn.1005-9954.2022.12.008
    [6] 杨文斌, 杨峻. SiO2-乙醇纳米流体重力热管传热性能的试验研究 [J]. 当代化工,2019,48(12):2962-2966. doi: 10.3969/j.issn.1671-0460.2019.12.067

    YANG Wenbin, YANG Jun. Experimental research on heat transfer performance of SiO2-ethanol nanofluid gravity heat pipe [J]. Contemporary Chemical,2019,48(12):2962-2966. doi: 10.3969/j.issn.1671-0460.2019.12.067
    [7] GOU X, ZHANG Q Y, LI Y M, et al. Experimental research on the thermal performance and semi-visualization of rectangular flat micro-grooved gravity heat pipes [J]. Energies,2018,11(9):2480. doi: 10.3390/en11092480
    [8] SUDHAN S A L, SOLOMON A B, SUNDER S. Heat transport limitations and performance enhancement of anodized grooved heat pipes charged with ammonia under gravity and anti-gravity condition [J]. Applied Thermal Engineering,2022,200:117633. doi: 10.1016/j.applthermaleng.2021.117633
    [9] 刘时安. 螺旋吸液芯热管传热性能的实验研究 [D]. 天津: 河北工业大学, 2018.

    LIU Shian. Experimental research on heat transfer performance of heat pipe with spiral liouid suction core [D]. Tianjin: Hebei University of Technology, 2018.
    [10] 郭威. 基于丝网型吸液芯的平板热管传热特性实验研究[D]. 大连: 大连理工大学, 2022.

    GUO Wei. Experimental study on heat transfer characteristics of flat plate heat pipe based on mesh type liquid absorbing core [D]. Dalian: Dalian University of Technology, 2022.
    [11] 仲宁波. 仿叶脉复合吸液芯柔性超薄平板热管制备及性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2022.

    ZHONG Ningbo. Preparation and performance study of a flexible ultra-thin plate heat pipe with a leaf like vein composite suction core [D]. Harbin: Harbin Institute of Technology, 2022.
    [12] WU S C, CHEN S K , XIAO N H, et al. Thermo-hydrodynamic performance of tubular pulsating heat pipes with integral sintered powder wicks [J]. International Communications in Heat and Mass Transfer,2023,141:106573. doi: 10.1016/j.icheatmasstransfer.2022.106573
    [13] ZHAO Z G, PENG G H , ZHANG Y H , et al. Heat transfer performance of flat micro-heat pipe with sintered multi-size copper powder wick [J]. Case Studies in Thermal Engineering,2023,42:102720. doi: 10.1016/j.csite.2023.102720
    [14] ZHAO J, JI Y, YUAN D Z, et al. Structural effect of internal composite wick on the anti-gravity heat transfer performance of a concentric annular high-temperature heat pipe [J]. International Communications in Heat and Mass Transfer,2022,139:106404. doi: 10.1016/j.icheatmasstransfer.2022.106404
    [15] 李万杰. 纳米流体热管砂轮强化传热试验与仿真研究[D]. 南京:南京航空航天大学, 2021.

    LI Wanjie. Experimental and simulation study on enhanced heat transfer of nanofluid heat pipe grinding wheel [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021.
    [16] 宫玉英, 赵蔚琳, 朱保杰,等. SiO2-水纳米流体热管传热性能的实验研究 [J]. 化工机械,2013,40(3):302-305,405. doi: 10.3969/j.issn.0254-6094.2013.03.007

    GONG Yuying, ZHAO Weilin, ZHU Baojie, et al. Experimental study on heat transfer performance of heat pipes for SiO2-water nanofluid [J]. Chemical Engineering & Machinery,2013,40(3):302-305,405. doi: 10.3969/j.issn.0254-6094.2013.03.007
    [17] JIANG W T, DING G L, PENG H, et al. Experimental and model research on nanorefrigerant thermal conductivity [J]. HVAC & R Research,2009,15(3):651-669. doi: 10.1080/10789669.2009.10390855
    [18] 史继媛. GO纳米流体热物性能及在热管中应用的研究 [D].济南: 济南大学, 2017.

    SHI Jiyuan. Research on the thermophysical properties of GO nanofluid and its application in heat pipes [D]. Jinan: Jinan University, 2017.
    [19] 林清宇, 刘鹏辉, 石卫军, 等. 纳米颗粒粒径对内置扭带螺旋管传热特性的影响 [J]. 当代化工,2017,46(5):905-908. doi: 10.13840/j.cnki.cn21-1457/tq.2017.05.031

    LIN Qingyu, LIU Penghui, SHI Weijun, et al. Effect of nanoparticle size on heat transfer characteristics of helical tube with twisted tape [J]. Contemporary Chemical Industry,2017,46(5):905-908. doi: 10.13840/j.cnki.cn21-1457/tq.2017.05.031
    [20] 徐正基, 杨峻. 石墨烯纳米片-水纳米流体重力热管的传热性能实验研究 [J]. 化工机械,2020,47(6):751-758. doi: 10.3969/j.issn.0254-6094.2020.06.005

    XU Zhengji, YANG Jun. Experimental study of heat transfer performance of gravity heat tube using graphene nanoplatelet-water nanofluids [J]. Chemical Machinery,2020,47(6):751-758. doi: 10.3969/j.issn.0254-6094.2020.06.005
    [21] 陆鑫, 杨峻. SiO2-DW纳米流体重力热管传热性能试验研究 [J]. 现代化工,2015,35(11):145-147. doi: 10.16606/j.cnki.issn0253-4320.2015.11.036

    LU Xin, YANG Jun. Heat transfer characteristics of SiO2-DW nanofluid gravity heat pipe [J]. Modern Chemical Industry,2015,35(11):145-147. doi: 10.16606/j.cnki.issn0253-4320.2015.11.036
    [22] 刘振华, 杨雪飞. 纳米流体在回路型重力热管中的沸腾传热特性 [J]. 上海交通大学学报,2011,45(6):890-894. doi: 10.16183/j.cnki.jsjtu.2011.06.021

    LIU Zhenhua, YANG Xuefei. Boiling heat transfer characteristics of nanofluids in a thermosyphon loop [J]. Journal of Shanghai Jiao Tong University,2011,45(6):890-894. doi: 10.16183/j.cnki.jsjtu.2011.06.021
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  16
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-29
  • 修回日期:  2024-03-18
  • 录用日期:  2024-04-12
  • 刊出日期:  2024-12-06

目录

    /

    返回文章
    返回