CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC晶片减薄用金属间化合物黏结剂金刚石砂轮制备及性能

陈帅鹏 何珂桥 康希越 贺跃辉 陈豫章

陈帅鹏, 何珂桥, 康希越, 贺跃辉, 陈豫章. SiC晶片减薄用金属间化合物黏结剂金刚石砂轮制备及性能[J]. 金刚石与磨料磨具工程, 2024, 44(6): 752-760. doi: 10.13394/j.cnki.jgszz.2023.0250
引用本文: 陈帅鹏, 何珂桥, 康希越, 贺跃辉, 陈豫章. SiC晶片减薄用金属间化合物黏结剂金刚石砂轮制备及性能[J]. 金刚石与磨料磨具工程, 2024, 44(6): 752-760. doi: 10.13394/j.cnki.jgszz.2023.0250
CHEN Shuaipeng, HE Keqiao, KANG Xiyue, HE Yuehui, CHEN Yuzhang. Preparation and properties of intermetallic-bonded diamond grinding wheel for thinning SiC wafer[J]. Diamond & Abrasives Engineering, 2024, 44(6): 752-760. doi: 10.13394/j.cnki.jgszz.2023.0250
Citation: CHEN Shuaipeng, HE Keqiao, KANG Xiyue, HE Yuehui, CHEN Yuzhang. Preparation and properties of intermetallic-bonded diamond grinding wheel for thinning SiC wafer[J]. Diamond & Abrasives Engineering, 2024, 44(6): 752-760. doi: 10.13394/j.cnki.jgszz.2023.0250

SiC晶片减薄用金属间化合物黏结剂金刚石砂轮制备及性能

doi: 10.13394/j.cnki.jgszz.2023.0250
详细信息
    通讯作者:

    贺跃辉,男,1963年生,博士研究生,教授。主要研究方向:金属间化合物、超硬材料和粉末冶金高速钢等。E-mail: yuehui@csu.edu.cn

  • 中图分类号: TG58; TG74

Preparation and properties of intermetallic-bonded diamond grinding wheel for thinning SiC wafer

  • 摘要: 与Si基材料相比,SiC因其导热性好、击穿电场强度高和禁带宽度大等特性成为芯片制造的理想基底材料。但SiC晶片莫氏硬度高达9.5,磨削困难。实现SiC晶片的减薄加工,降低加工成本,提高SiC晶片的加工质量,成为半导体行业亟待解决的问题。采用Cu3Sn和Cu6Sn5金属间化合物为黏结剂,制备面向SiC晶片粗磨和精磨减薄的金刚石砂轮。结果表明:金刚石砂轮能够适用于SiC晶片的减薄加工,制备的M5/10金刚石粗磨砂轮减薄6英寸(15.24 cm)SiC晶片的磨耗比达1.0∶5.0,SiC晶片表面粗糙度为0.011 µm;制备的M1/2金刚石精磨砂轮减薄同种SiC晶片,其磨耗比为1.0∶0.6,SiC晶片表面粗糙度达2.076 nm,总厚度变化 RTTV< 3.00 µm。金刚石砂轮的减薄效果良好,可满足工业生产需要。

     

  • 图  1  Cu-Sn相图、晶体结构示意图和晶格参数

    Figure  1.  Phase diagram, schematic diagram of crystal structure and lattice parameters of Cu-Sn

    图  2  2种金刚石砂轮

    Figure  2.  Two kinds of diamond grinding wheels

    图  3  金刚石砂轮磨削过程示意图

    Figure  3.  Schematic diagram of diamond grinding wheel grinding process

    图  4  造孔剂添加量对金刚石砂轮粗磨齿气孔率的影响

    Figure  4.  Effect of adding amount of pore-forming agent on porosity of rough grinding teeth of diamond grinding wheel

    图  5  造孔剂添加量对金刚石砂轮粗磨齿抗弯强度的影响

    Figure  5.  Effect of adding amount of pore-forming agent on bending strength of rough grinding teeth of diamond grinding wheel

    图  6  粗磨金刚石砂轮C的表面形貌

    Figure  6.  Surface morphology of rough diamond grinding wheel C

    图  7  粗磨减薄后的SiC晶片表面形貌及粗糙度曲线

    Figure  7.  Surface morphology and roughness curve of SiC wafers after rough grinding and thinning

    图  8  造孔剂添加量对金刚石砂轮精磨齿气孔率的影响

    Figure  8.  Effect of adding amount of pore forming agent on porosity of fine grinding teeth of diamond grinding wheel

    图  9  造孔剂添加量对金刚石砂轮精磨齿抗弯强度的影响

    Figure  9.  Effect of adding amount of pore forming agent on bending strength of fine grinding teeth of diamond grinding wheel

    图  10  精磨金刚石砂轮F的表面形貌

    Figure  10.  Surface morphology of fine diamond grinding wheel F

    图  11  精磨后SiC晶片表面质量

    Figure  11.  Surface quality of SiC wafer after fine grinding

    图  12  SiC晶片的RTTV检测结果

    Figure  12.  RTTV detection result of SiC wafer

    表  1  Si和SiC指标参数

    Table  1.   Si and SiC index parameters

    材料 禁带宽度
    E1 / eV
    饱和电子
    漂移率
    μ / (cm·S−1)
    击穿场强 E2 /
    (MV·cm−1)
    热导率 K /
    [W·(cm.K)−1]
    莫氏硬度
    HM
    Si 1.12 1 × 107 0.3 1.5 7.0
    SiC 3.20 2 × 107 3.5 4.0 9.5
    下载: 导出CSV

    表  2  Cu3Sn和Cu6Sn5材料的基础性能

    Table  2.   Basic properties of Cu3Sn and Cu6Sn5 materials

    金属间
    化合物
    烧结温度
    θ / ℃
    密度
    ρ / (g·cm−3)
    抗弯强度
    σ / MPa
    硬度 / HV 冲击韧性
    KIC / (J·cm−2)
    Cu3Sn 450 8.89 206.6 389.0 0.45
    Cu6Sn5 450 8.30 142.0 387.2 0.31
    下载: 导出CSV

    表  3  粗磨金刚石砂轮化学组成(质量分数)

    Table  3.   Chemical compositions of rough diamond grinding wheels (mass fraction )

    砂轮
    编号
    金刚石
    ω1 / %
    Cu3Sn
    ω2 / %
    石墨
    ω3 / %
    造孔剂
    ω4 / %
    其他
    ω5 / %
    A10~20705~10103~6
    B10~20655~10153~6
    C10~20605~10203~6
    D10~20555~10253~6
    下载: 导出CSV

    表  4  精磨金刚石砂轮化学组成(质量分数)

    Table  4.   Chemical compositions of fine diamond grinding wheels (mass fraction )

    砂轮
    编号
    金刚石
    ω6 / %
    Cu6Sn5
    ω7 / %
    造孔剂
    ω8 / %
    其他
    ω9 / %
    E 30~40 35 25 3~6
    F 30~40 30 30 3~6
    G 30~40 25 35 3~6
    H 30~40 20 40 3~6
    下载: 导出CSV

    表  5  金刚石砂轮C粗磨减薄SiC晶片时的批量使用效果

    Table  5.   Batch use effect of diamond grinding wheel C for rough grinding and thinning of SiC wafers

    参数 类型或取值
    粗磨砂轮 C
    砂轮转速 n1 / (r·min−1) 2 000
    进给速率 vw1 / (µm·s−1) 0.5
    磨耗比 R1 1.0∶5.0
    表面粗糙度 Ra1 / µm 0.011
    磨床最大负载值 La1 / % 30~35
    破片率 Rr / % <0.2
    下载: 导出CSV

    表  6  精磨金刚石砂轮的使用效果

    Table  6.   Application effects of fine diamond grinding wheels

    砂轮编号造孔剂质量分数 ω8 / %使用效果
    E25负载报警
    F30正常
    G35砂轮齿崩边
    H40断齿
    下载: 导出CSV

    表  7  金刚石砂轮F精磨SiC晶片的实际效果

    Table  7.   Actual effect of fine grinding SiC wafer with diamond grinding wheel F

    参数类型或取值
    精磨砂轮F
    砂轮转速 n2 / (r·min−1)2 000
    进给速率 vw2 / (µm·s−1)0.3
    磨耗比 R21.0∶0.6
    表面粗糙度 Ra2 / nm2.076
    磨床最大负载值 La2 / %35~40
    RTTV / µm2.55
    下载: 导出CSV
  • [1] PATTEN J A, JACOB J. Comparison between numerical simulations and experiments for single-point diamond turning of single-crystal silicon carbide [J]. Journal of Manufacturing Processes,2008,10(1):28-33. doi: 10.1016/j.jmapro.2008.08.001
    [2] WU R, ZHOU K, YUE C Y, et al. Recent progress in synthesis, properties and potential applications of SiC nanomaterials [J]. Progress in Materials Science,2015,72:1-60. doi: 10.1016/j.pmatsci.2015.01.003
    [3] 张鹏. 碳化硅单晶衬底超精密抛光关键技术研究 [D]. 济南: 山东大学, 2017.

    ZHANG Peng. Research on the key technology for ultra-precision polishing of silicon carbide single crystal substrate [D]. Jinan: Shandong University, 2017.
    [4] 张波, 邓小川, 张有润, 等. 宽禁带半导体SiC功率器件发展现状及展望 [J]. 中国电子科学研究院学报,2009,4(2):111-118. doi: 10.3969/j.issn.1673-5692.2009.02.001

    ZHANG Bo, DENG Xiaochuan, ZHANG Yourun, et al. Recent development and future perspective of silicon carbide power device: Opportunity and challenge [J]. Journal of Chinese Academy of Electronic Sciences,2009,4(2):111-118. doi: 10.3969/j.issn.1673-5692.2009.02.001
    [5] 李丽婷. 碳化硅半导体材料研究进展及其产业发展建议 [J]. 厦门科技,2016(5):1-11. doi: 10.3969/j.issn.1007-1563.2016.05.001

    LI Liting. Research progress of silicon carbide semiconductor materials and its suggestions for industrial development [J]. Xiamen Science and Technology,2016(5):1-11 doi: 10.3969/j.issn.1007-1563.2016.05.001
    [6] 刘宇浩. 碳化硅材料性能优异, 应用迎来发展良机 [J]. 中国集成电路,2023,32(5):16-21. doi: 10.3969/j.issn.1681-5289.2023.05.003

    LIU Yuhao. Silicon carbide material has excellent performance and ushers in a good opportunity for development in the application field [J]. China IC,2023,32(5):16-21. doi: 10.3969/j.issn.1681-5289.2023.05.003
    [7] 肖强, 李言, 李淑娟. SiC单晶片CMP 超精密加工技术现状与趋势 [J]. 宇航材料工艺,2010,40(1):9-13. doi: 10.3969/j.issn.1007-2330.2010.01.003

    XIAO Qiang, LI Yan, LI Shujuan. Situation and development trends of CMP for SiC monocrystal slice [J]. Aerospace Materials Technology,2010,40(1):9-13. doi: 10.3969/j.issn.1007-2330.2010.01.003
    [8] HARA H, SANO Y, MIMURA H, et al. Novel abrasive-free planarization of 4H-SiC (0001) using catalyst [J]. Journal of Electronic Materials,2006,35(8):11-14. doi: 10.1007/s11664-006-0218-6
    [9] NAMBA Y, KOBAYASHI H, SUZUKI H, et al. Ultraprecision surface grinding of chemical vapor deposited silicon carbide for X-ray mirrors using resinoid-bonded diamond wheels [J]. CIRP Annals:Manufacturing Technology,1999,48(1):277-280. doi: 10.1016/S0007-8506(07)63183-7
    [10] ETO H, LIN W, WATANABE Y, et al. 407 ELID grinding of large SiC mirror [J]. The Manufacturing & Machine Tool Conference: The Japan Society of Mechanical Engineers, 2006: 61-62. doi: 10.1299/jsmemmt.2006.6.61
    [11] 王超超, 张凤林, 欧阳承达, 等. 用于磨削6H-SiC晶片的陶瓷结合剂金刚石砂轮制备及磨削试验研究 [J]. 工具技术,2022,56(12):48-51. doi: 10.3969/j.issn.1000-7008.2022.12.009

    WANG Chaochao, ZHANG Fenglin, OUYANG Chengda, et al. Experimental study on preparation of vitrified bond diamond grinding wheel for grinding 6H-SiC wafers [J]. Tools Technology,2022,56(12):48-51. doi: 10.3969/j.issn.1000-7008.2022.12.009
    [12] 李论. 振动辅助单颗磨粒划擦碳化硅晶体的数值仿真研究 [D]. 泉州: 华侨大学, 2020.

    LI Lun. Numerical simulation study on vibration-assisted single abrasive grain scratching silicon carbide crystals [D]. Quanzhou: Huaqiao University, 2020.
    [13] CHEN Z, ZHANG X H, WEI D D, et al. Improved grinding performance of SiC using an innovative bionic vein-like structured grinding wheel optimized by hydrodynamics [J]. Journal of Manufacturing Processes,2023,101:195-207. doi: 10.1016/j.jmapro.2023.06.010
    [14] 王照. 磨削硬脆材料多孔陶瓷结合剂金刚石磨具的研究 [D]. 郑州: 河南工业大学, 2023.

    WANG Zhao. Study on Diamond abrasives for grinding porous ceramic bond of hard and brittle materials [D]. Zhengzhou: Henan University of Technology, 2023.
    [15] LI W, HU X L, GUI L, et al. Grain wear properties and grinding performance of porous diamond grinding wheels [J]. Wear, 2023, 93: 530-531. doi: 10.1016/j.wear.2023.204993
    [16] 刘小磐. 陶瓷结合剂金刚石砂轮的制备及磨削性能研究 [D]. 长沙: 湖南大学, 2013.

    LIU Xiaopan. Study on preparation and grinding properties of vitrified bond diamond wheel [D]. Changsha: Hunan University, 2013.
    [17] 苏宏华. 新型金属结合剂金刚石工具技术的基础研究 [D]. 南京:南京航空航天大学, 2009.

    SU Honghua. Fundamental research on fabrication and application technology of metal bonded diamond [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
    [18] 宋冬冬. 金属—陶瓷复合结合剂金刚石砂轮制备及性能研究 [D]. 长沙:湖南大学, 2018.

    SONG Dongdong. Study on preparation and performance of metal-vitrified composite bond diamond grinding wheels [D]. Changsha: Hunan University, 2018.
    [19] PENG J W, ZHANG F L, HUANG Y J, et al. Comparative study on NiAl and FeAl intermetallic-bonded diamond tools and grinding performance for Si3N4 ceramic [J]. Ceramics International,2021,47:32736-32746. doi: 10.1016/j.ceramint.2021.08.170
    [20] HUANG L, YU J, KIPSANG B, et al. Wetting mechanism of Cu3Ni, Cu3Zn, Cu3Sn on diamond surface: A first-principles calculation [J]. Physica B: Condensed Matter,2013,613:412993. doi: 10.1016/j.physb.2021.412993
    [21] CHEN S P, KANG X Y, HE Y H. Study on the preparation of Ni–Al intermetallic-bonded diamond grinding block and grinding performance for sapphire [J]. Diamond and Related Materials,2022,130:109490. doi: 10.1016/j.diamond.2022.109490
    [22] POLVI J, HEINOLA K, NORDLUND K. An interatomic potential for W–N interactions [J]. Modelling & Simulation in Materials Science & Engineering,2016,24(6):065007. doi: 10.1088/0965-0393/24/6/065007
    [23] 桑夏晗. 铜锡合金中金属间化合物的电子显微学研究 [D]. 北京: 中国科学院金属研究所, 2008.

    SANG Xiahan. Electron microscopy of intermetallics in Cu-Sn alloys [D]. Beijing: Institute of Metal Research, Chinese Academy of Sciences, 2008.
    [24] 李伯民, 赵波, 李清. 磨料、磨具与磨削技术 [M]. 北京: 化学工业出版社, 2015.

    LI Bomin, ZHAO Bo, LI Qing. Abrasive, abrasive tools and grinding techniques [M]. Beijing: Chemical Industry Press, 2015.
    [25] 廖翠姣. 多孔金属结合剂金刚石砂轮的开发研究 [D]. 泉州: 华侨大学, 2006.

    LIAO Cuijiao. The development of porous metal bonded diamond grinding wheels [D]. Quanzhou: Huaqiao University, 2006.
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  588
  • HTML全文浏览量:  189
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-23
  • 修回日期:  2024-01-31
  • 网络出版日期:  2024-02-21
  • 刊出日期:  2024-12-06

目录

    /

    返回文章
    返回