CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电芬顿CMP抛光液中磨粒的分散性研究及中性环境下绿色抛光液的设计

成锋 王子睿 朱睿 王永光 彭洋 张天宇 赵栋 樊成

成锋, 王子睿, 朱睿, 王永光, 彭洋, 张天宇, 赵栋, 樊成. 电芬顿CMP抛光液中磨粒的分散性研究及中性环境下绿色抛光液的设计[J]. 金刚石与磨料磨具工程, 2025, 45(1): 113-121. doi: 10.13394/j.cnki.jgszz.2023.0242
引用本文: 成锋, 王子睿, 朱睿, 王永光, 彭洋, 张天宇, 赵栋, 樊成. 电芬顿CMP抛光液中磨粒的分散性研究及中性环境下绿色抛光液的设计[J]. 金刚石与磨料磨具工程, 2025, 45(1): 113-121. doi: 10.13394/j.cnki.jgszz.2023.0242
CHENG Feng, WANG Zirui, ZHU Rui, WANG Yongguang, PENG Yang, ZHANG Tianyu, ZHAO Dong, FAN Cheng. Study on dispersion of abrasive particles in electro Fenton CMP slurry and design of green polishing fluid in neutral environment[J]. Diamond & Abrasives Engineering, 2025, 45(1): 113-121. doi: 10.13394/j.cnki.jgszz.2023.0242
Citation: CHENG Feng, WANG Zirui, ZHU Rui, WANG Yongguang, PENG Yang, ZHANG Tianyu, ZHAO Dong, FAN Cheng. Study on dispersion of abrasive particles in electro Fenton CMP slurry and design of green polishing fluid in neutral environment[J]. Diamond & Abrasives Engineering, 2025, 45(1): 113-121. doi: 10.13394/j.cnki.jgszz.2023.0242

电芬顿CMP抛光液中磨粒的分散性研究及中性环境下绿色抛光液的设计

doi: 10.13394/j.cnki.jgszz.2023.0242
基金项目: 国家自然科学基金(52375458,51775360,51501121,U1533101);中国博士后科学基金(2015M571800);江苏省博士后科学基金(1402121C);江苏省研究生科研与实践创新计划项目(KYCX23_3236)。
详细信息
    作者简介:

    通信作者:王永光,男,1981年生,教授。主要研究方向:机械摩擦 / 磨损与润滑、材料表面工程、超精密加工智能制造。E-mail: Wangyg@suda.edu.cn

  • 中图分类号: TQ164; TG73; TG147

Study on dispersion of abrasive particles in electro Fenton CMP slurry and design of green polishing fluid in neutral environment

  • 摘要: 芬顿反应是一种能产生强氧化性羟基自由基( · OH)的绿色氧化反应,选用三聚磷酸钠(STPP)为外加电解质、金刚石为磨粒,比较STPP、NaCl和Na2SO4对芬顿反应中金刚石磨粒分散稳定性的影响,并研究该绿色抛光液在不同pH值下对电芬顿抛光液中金刚石磨粒的抗沉降能力、Zeta电位以及抛光液粒径的影响,并对GaN晶圆的抛光效果进行验证。结果表明:STPP能与芬顿反应抛光液中的Fe2+络合,防止多余的金属阳离子流入扩散层,提高了金刚石磨粒的分散稳定性,且STPP能有效改善芬顿反应抛光液中金刚石磨粒团聚的现象;此外,STPP使抛光液能在偏中性环境中具有较好的分散性,且含有STPP的绿色抛光液可在中性环境下实现对GaN晶圆高效、无损的超精密抛光。

     

  • 图  1  不同时间下A~E抛光液的抗沉降效果

    Figure  1.  Anti-settling effect of A~E polishing slurry at different times

    图  2  不同时间下1~5抛光液的抗沉降效果

    Figure  2.  Anti-settling effect of 1~5 polishing slurry at different times

    图  3  不同电解质抛光液A~D在pH调节前后的Zeta电位

    Figure  3.  Zeta potential of different electrolytes polishing slurry A to D before and after pH adjustment

    图  4  双电层重叠产生的排斥力示意图

    Figure  4.  Schematic diagram of repulsive force generated by overlapping double electric layers

    图  5  STPP下不同pH值抛光液1~5的Zeta电位

    Figure  5.  Zeta potential of polishing slurry 1 to 5 at different pH values under STPP

    图  6  不同电解质及pH下金刚石抛光液中磨粒的平均粒径大小

    Figure  6.  Average abrasive particle sizes of diamond polishing slurry under different electrolytes and pH values

    图  7  A、B、C、D 4种抛光液对GaN表面形貌及抛光效果的影响

    Figure  7.  Influences of four polishing slurry A, B, C and D on surface morphologies and polishing effects of GaN

    图  8  1~5抛光液对GaN表面形貌及抛光效果的影响

    Figure  8.  Influences of polishing slurry 1 to 5 on surface morphologies and polishing effects of GaN

    图  9  STPP作用下电芬顿ECMP原理

    Figure  9.  Schematic diagram of Fenton ECMP powered by STPP

    表  1  6种抛光液成分

    Table  1.   Six types of polishing solution components

    抛光液组号外加电解质
    种类
    电解质质量
    分数 ω1 / %
    抛光液pH值金刚石磨粒质量
    分数 ω2 / %
    FeSO4·7H2O
    质量 m / g
    去离子水
    A03.010.2余量
    BNaCl13.010.2余量
    CNa2SO413.010.2余量
    DSTPP13.010.2余量
    ESTPP16.010.2余量
    F07.010余量
    下载: 导出CSV
  • [1] 唐林江, 陈滔, 张宝林, 等. GaN基半导体技术的空间应用研究与展望 [J]. 空间电子技术,2018,15(2):60-67. doi: 10.3969/j.issn.1674-7135.2018.02.010

    TANG Linjiang, CHEN Tao, ZHANG Baolin, et al. Space application research and prospect of GaN-based semiconductor technology [J]. Space Electronics Technology,2018,15(2):60-67. doi: 10.3969/j.issn.1674-7135.2018.02.010
    [2] 顾雨萍, 李向江, 吴秀梅. 第三代半导体材料发展前景分析 [J]. 中国集成电路,2023,32(3):22-25. doi: 10.3969/j.issn.1681-5289.2023.03.005

    GU Yuping, LI Xiangjiang, WU Xiumei. Development prospect of third generation semiconductor materials [J]. China Integrated Circuits,2023,32(3):22-25. doi: 10.3969/j.issn.1681-5289.2023.03.005
    [3] ARJUNAN A C, SINGH D, WANG H T, et al. Improved free-standing GaN schottky diode characteristics using chemical mechanical polishing [J]. Applied Surface Science,2008,255(5):3085-3089. doi: 10.1016/j.apsusc.2008.08.096
    [4] GAO P L, ZHANG Z Y, WANG D, et al. Research progress of green chemical mechanical polishing slurry [J]. Acta Physica Sinica, 2021, 70(6): 234130440.
    [5] 杨军, 陈泽鹏, 郭雅茹, 等. 电芬顿降解抗生素废水研究进展 [J]. 当代化工,2023,52(10):2427-2433. doi: 10.13840/j.cnki.cn21-1457/tq.2023.10.037

    YANG Jun, CHEN Zepeng, GUO Yaru, et al. Research progress on the degradation of antibiotic wastewater by electrofenton [J]. Contemporary Chemical Industry,2023,52(10):2427-2433. doi: 10.13840/j.cnki.cn21-1457/tq.2023.10.037
    [6] 马成新, 史小华. 浅谈金刚石工具的现状与发展趋势 [J]. 超硬材料工程,2015,27(5):45-48. doi: 10.3969/j.issn.1673-1433.2015.05.009

    MA Chengxin, SHI Xiaohua. A brief discussion on the current status and development trends of diamond tools [J]. Journal of Superhard Materials Engineering,2015,27(4):45-28. doi: 10.3969/j.issn.1673-1433.2015.05.009
    [7] 董彦辉, 牛风丽, 任泽. 金刚石磁性磨料与SiC磁性磨料的研磨加工性能分析 [J]. 金刚石与磨料磨具工程,2023,43(3):379-385. doi: 10.13394/j.cnki.jgszz.2022.0154

    DONG Yanhui, NIU Fengli, REN Ze. Analysis of abrasive performance of diamond magnetic abrasives and SiC magnetic abrasives [J]. Diamond and Abrasive Tools Engineering,2023,43(3):379-385. doi: 10.13394/j.cnki.jgszz.2022.0154
    [8] DERJAGUIN B, LANDAU L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes [J]. Progress in Surface Science,1993,43(1 / 2 / 3 / 4):30-59. doi: 10.1016/0079-6816(93)90013-L
    [9] ZHU Y, QIU S, DENG F, et al. Enhanced degradation of sulfathiazole by electro-Fenton process using a novel carbon nitride modified electrode [J]. Carbon,2019,145:321-332. doi: 10.1016/j.carbon.2019.01.032
    [10] 朱蒙. 氯化钠电解质在电催化氧化体系降解有机污染物的作用研究 [D]. 南昌: 南昌航空大学, 2022.

    ZHU Meng. Study on the degradation of organic pollutants by sodium chloride electrolyte in electrocatalytic oxidation system [D]. Nanchang: Nanchang Hangkong University, 2022.
    [11] 程磊. 基于电解质调控的熔石英磁流变抛光机理研究 [D]. 绵阳: 西南科技大学, 2023.

    CHENG Lei. Research on magnetorheological polishing mechanism of fused quartz based on electrolyte regulation [D]. Mianyang: Southwest University of Science and Technology, 2023.
    [12] 邓凤霞. 三聚磷酸钠电芬顿体系氧化效能强化及作用机制 [D]. 哈尔滨: 哈尔滨工业大学, 2020.

    DENG Fengxia. Enhancement of oxidation efficiency of sodium tripolyphosphate electrofenton system and its mechanism [D]. Harbin: Harbin Institute of Technology, 2020.
    [13] DO T M, BYUN J Y, KIM S H. An electro-Fenton system using magnetite coated metallic foams as cathode for dye degradation [J]. Catalysis Today,2017,295:48-55. doi: 10.1016/j.cattod.2017.05.016
    [14] 张碧波, 陈剑, 冉启洋, 等. 柠檬酸改性芬顿对土壤中石油烃的去除效果 [J]. 湖南农业科学,2019(12):38-41. doi: 10.16498/j.cnki.hnnykx.2019.012.009

    ZHANG Bibo, CHEN Jian, RAN Qiyang, et al. Removal effect of citric acid modified Fenton on petroleum hydrocarbon in soil [J]. Hunan Agricultural Sciences,2019(12):38-41. doi: 10.16498/j.cnki.hnnykx.2019.012.009
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  22
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-15
  • 修回日期:  2024-02-06
  • 录用日期:  2024-04-18
  • 网络出版日期:  2025-03-24
  • 刊出日期:  2025-02-20

目录

    /

    返回文章
    返回