CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆管切向振动辅助磨料流的光整加工试验研究

王硕 董志国 郑志鑫 温永吉 陈攀

王硕, 董志国, 郑志鑫, 温永吉, 陈攀. 圆管切向振动辅助磨料流的光整加工试验研究[J]. 金刚石与磨料磨具工程, 2024, 44(4): 544-552. doi: 10.13394/j.cnki.jgszz.2023.0189
引用本文: 王硕, 董志国, 郑志鑫, 温永吉, 陈攀. 圆管切向振动辅助磨料流的光整加工试验研究[J]. 金刚石与磨料磨具工程, 2024, 44(4): 544-552. doi: 10.13394/j.cnki.jgszz.2023.0189
WANG Shuo, DONG Zhiguo, ZHENG Zhixin, WEN Yongji, CHEN Pan. Experimental study on tangential vibration assisted abrasive flow finishing of circular tubes[J]. Diamond & Abrasives Engineering, 2024, 44(4): 544-552. doi: 10.13394/j.cnki.jgszz.2023.0189
Citation: WANG Shuo, DONG Zhiguo, ZHENG Zhixin, WEN Yongji, CHEN Pan. Experimental study on tangential vibration assisted abrasive flow finishing of circular tubes[J]. Diamond & Abrasives Engineering, 2024, 44(4): 544-552. doi: 10.13394/j.cnki.jgszz.2023.0189

圆管切向振动辅助磨料流的光整加工试验研究

doi: 10.13394/j.cnki.jgszz.2023.0189
基金项目: 山西省自然科学基金(2021-0302-123104)。
详细信息
    作者简介:

    董志国,男,1975 年生,博士、副教授。主要研究方向:磨料流光整加工。E-mail:dong_zhiguo@126.com

  • 中图分类号: TG73; TG58

Experimental study on tangential vibration assisted abrasive flow finishing of circular tubes

  • 摘要: 传统磨料流加工技术在加工孔道内壁、形状复杂的工件时,工件表面在各个方向上的加工质量不均匀。在传统磨料流加工中加入振动辅助,使工件表面形成波浪形加工轨迹,以提高工件表面质量和材料去除效率。分析振动辅助加工原理和磨粒对工件表面的划痕作用,搭建振动辅助磨料流加工试验平台,研究磨料流速、振幅、频率对工件表面粗糙度与表面形貌的影响。结果表明:与传统磨料流加工相比,振动辅助磨料流加工使磨粒在工件表面的切削路径变长,形成交叉划痕,工件表面粗糙度降低;振动频率越高,磨粒与工件表面间的微切削长度越长,工件的表面粗糙度越低;磨料流速增大,磨粒对工件表面的切削效果增强,表面粗糙度下降的幅度更大。

     

  • 图  1  振动辅助磨料流加工原理及示意图

    Figure  1.  Principle and schematic diagram of vibration assisted AFM

    图  2  圆管表面划痕

    Figure  2.  Scratches on surface of tubes

    图  3  磨料流加工设备

    Figure  3.  Abrasive flow machining equipment

    图  4  流体磨料静置1 h后的状态

    Figure  4.  State of fluid abrasive after standing for 1 h

    图  5  铜片的初始表面形貌

    Figure  5.  Initial surface morphology of copper sheet

    图  6  Cu-1与Cu-4的表面粗糙度变化

    Figure  6.  Surface roughness changes of Cu-1 and Cu-4

    图  7  Cu-1与Cu-4加工后的表面形貌

    Figure  7.  Surface morphology of Cu-1 and Cu-4 after processing

    图  8  振动频率对表面粗糙度的影响

    Figure  8.  Effect of vibration frequency on surface roughness

    图  9  加工6次后Cu-2、Cu-3和Cu-4的表面形貌

    Figure  9.  Surface morphology of Cu-2, Cu-3 and Cu-4 after 6 times processing

    图  10  3种规格凸轮实物图

    Figure  10.  Pictures of three types of cams

    图  11  振动振幅对表面粗糙度的影响

    Figure  11.  Effect of vibration amplitude on surface roughness

    图  12  Cu-3、Cu-7和Cu-8加工后的表面形貌

    Figure  12.  Surface morphology of Cu-3、Cu-7 and Cu-8 after processing

    图  13  磨料流速对表面粗糙度的影响

    Figure  13.  Effect of abrasive flow rate on surface roughness

    图  14  Cu-3、Cu-6和Cu-5加工后的表面形貌

    Figure  14.  Surface morphology of Cu-3,Cu-6 and Cu-5 after processing

    表  1  磨料流加工试验方案

    Table  1.   Experimental scheme of abrasive flow machining

    方案编号凸轮规格凸轮转速
    n / (r·min−1)
    磨料流速
    v / (mm·s−1)
    工件编号加工次数是否振动加工前表面
    粗糙度Ra /μm
    1 L76 038Cu-160.230
    2 L7615038Cu-260.230
    3 L7622538Cu-360.230
    4 L7630038Cu-460.230
    5 L7622519Cu-560.230
    6 L7622528Cu-660.230
    7 L4722538Cu-760.230
    8L10222538Cu-860.230
    下载: 导出CSV
  • [1] SWAM S, HARISH K, SANTOSH K, et al. A systematic review on recent advancements in abrasive flow machining (AFM) [J]. Materials today:Proceedings,2022,56:60-96.
    [2] JONES A R, HULLl J B. Ultrasonic flow polishing [J]. Ultrasonics,1998,36(1/2/3/4/5):97-101.
    [3] LIU D F, YAN R M, CHEN T. Material removal model of ultrasonic elliptical vibration-assisted chemical mechanical polishing for hard and brittle materials [J]. The International Journal of Advanced Manufacturing Technology,2017,92(1//2/3/4):81-99.
    [4] GUDIPADU V, SHARMA A K, SINGH N. Simulation of mediabehaviour in vibration assisted abrasive flow machining [J]. Simulation Modelling Practice & Theory,2015,51:1-13.
    [5] 李道朋, 傅波, 庄文敏. 换能器阵列型超声抛光机理及声场仿真和实验研究 [J]. 西安交通大学学报,2020,54(2):24-34.

    LI Daopeng, FU Bo, ZHUANG Wenmin. Ultrasonic polishing mechanism and simulative and experimental sound field researches on transducer array [J]. Journal of Xi'an Jiaotong University,2020,54(2):24-34.
    [6] VENKATESH G, SHARMA A K, KUMAR P. On ultrasonic assisted abrasive flow finishing of bevel gears [J]. International Journal of Machine Tools and Manufacture,2015,89:29-38. doi: 10.1016/j.ijmachtools.2014.10.014
    [7] 张宇超, 董志国, 雷鸿博, 等. 超声振动辅助软性磨料流喷孔光整加工研究 [J]. 组合机床与自动化加工技术,2021(7):165-169. doi: 10.13462/j.cnki.mmtamt.2021.07.038

    ZHANG Yuchao, DONG Zhiguo, LEI Hongbo, et al. Study on ultrasonic vibration-assisted soft abrasive flow machining of nozzle hole [J]. Modular Machine Tool & Automatic Manufacturing Technique,2021(7):165-169. doi: 10.13462/j.cnki.mmtamt.2021.07.038
    [8] 张忠伟. 超声振动辅助微细磨料水射流切割技术研究[D]. 济南: 山东大学, 2014.

    ZHANG Zhongwei. Study on ultrasonic vibration-assisted micro abrasive waterjet cutting [D]. Jinan: Shandong University, 2014.
    [9] 吕哲. 超声振动辅助磨料水射流抛光冲蚀机理与工艺技术研究 [D]. 济南: 山东大学, 2015.

    LV Zhe. A study of the erosion mechanisms and processing technology for ultrasonic vibration assisted abrasive waterjet polishing [D]. Jinan: Shandong University, 2015.
    [10] 张宇超. 振动辅助磨料流圆管精密抛光机理与工艺研究 [D] . 太原: 太原理工大学, 2022.

    ZHANG Yuchao. Research on the mechanism and technology of vibration-assisted abrasive flow for precision polishing of circular tubes [D]. Taiyuan: Taiyuan University of Technology, 2022.
    [11] SCHVLER M, DADGAR M, HERRIG T, et al. Influence of abrasive properties on erosion in waterjet machining [J]. Procedia CIRP,2021,102:1-17. doi: 10.1016/j.procir.2021.09.001
    [12] WANG T, CAO X, WANG C, et al. Numerical simulation of herringbone gear abrasive flow machining [J]. Vibroengineering Procedia,2022,47:110-123.
    [13] 段泽斌, 轧刚, 董志国, 等. 可控倒锥角微孔磨料流加工成形研究 [J]. 机械设计与制造, 2018(3): 116-119.

    DUAN Zebin, YA Gang, DONG Zhiguo, et al. Controlled abrasive flow machining forming inverted cone angle microporous [J]. Machinery Design & Manufacture, 2018(3): 116-119.
    [14] 王昌盛. 微晶陶瓷磨料砂轮磨削20CrMnTi齿轮时的划擦机理研究 [D]. 济南: 山东大学, 2017.

    WANG Changsheng. Study on scratch mechanism of gear grinding on 20CrMnTi steel with microcrystalline ceramic abrasive wheel [D]. Jinan: Shandong University, 2017.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  55
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-08
  • 修回日期:  2023-11-16
  • 录用日期:  2023-11-22
  • 网络出版日期:  2024-09-25
  • 刊出日期:  2024-08-20

目录

    /

    返回文章
    返回