CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Si调控Cu-20Sn-15Ti钎料显微组织与性能的演变行为

张黎燕 杜全斌 毛望军 崔冰 李昂 王蕾 纠永涛 梁杰

张黎燕, 杜全斌, 毛望军, 崔冰, 李昂, 王蕾, 纠永涛, 梁杰. Si调控Cu-20Sn-15Ti钎料显微组织与性能的演变行为[J]. 金刚石与磨料磨具工程, 2024, 44(3): 309-318. doi: 10.13394/j.cnki.jgszz.2023.0176
引用本文: 张黎燕, 杜全斌, 毛望军, 崔冰, 李昂, 王蕾, 纠永涛, 梁杰. Si调控Cu-20Sn-15Ti钎料显微组织与性能的演变行为[J]. 金刚石与磨料磨具工程, 2024, 44(3): 309-318. doi: 10.13394/j.cnki.jgszz.2023.0176
ZHANG Liyan, DU Quanbin, MAO Wangjun, CUI Bing, LI Ang, WANG Lei, JIU Yongtao, LIANG Jie. Evolution behavior of microstructure and properties of Cu-20Sn-15Ti filler metal regulated by Si[J]. Diamond & Abrasives Engineering, 2024, 44(3): 309-318. doi: 10.13394/j.cnki.jgszz.2023.0176
Citation: ZHANG Liyan, DU Quanbin, MAO Wangjun, CUI Bing, LI Ang, WANG Lei, JIU Yongtao, LIANG Jie. Evolution behavior of microstructure and properties of Cu-20Sn-15Ti filler metal regulated by Si[J]. Diamond & Abrasives Engineering, 2024, 44(3): 309-318. doi: 10.13394/j.cnki.jgszz.2023.0176

Si调控Cu-20Sn-15Ti钎料显微组织与性能的演变行为

doi: 10.13394/j.cnki.jgszz.2023.0176
基金项目: 河南省科技攻关项目资助(232102220058,222102220114,202102210072);河南省高等学校重点科研项目(24A460008)。
详细信息
    通讯作者:

    杜全斌,男,1983年生,博士、副教授。主要研究方向:先进焊接材料与装备、超硬工具制备技术与装备、金刚石热界面材料开发、激光增材表面修复再制造。E-mail:paperduqb@126.com

  • 中图分类号: TQ164; TG42

Evolution behavior of microstructure and properties of Cu-20Sn-15Ti filler metal regulated by Si

  • 摘要: 为通过成分调控改善Cu-Sn-Ti钎料的显微组织及性能,采用扫描电子显微镜、X射线衍射仪及EDS能谱分析等设备,研究了Si对Cu-20Sn-15Ti钎料显微组织与性能的影响规律。结果表明:Cu-20Sn-15Ti钎料的显微组织为大尺寸多边形状CuSn3Ti5相、共晶组织和α-Cu相。添加少量的Si(质量分数≤2.0%)可细化钎料中多边形状CuSn3Ti5相,并生成小尺寸Si3Ti5相,较多的Si(质量分数≥3.0%)会造成多边形状CuSn3Ti5相分化离散、共晶组织粗化减少,Si3Ti5相含量增加且粗化,当Si含量增至5.0%时,钎料不再生成多边形状CuSn3Ti5相和共晶组织,Ti主要用于生成Ti5Si3相,显微组织主要为Ti5Si3相、α-Cu相、Cu41Sn11相和少量条状CuSn3Ti5相;与Cu、Sn相比,Si与Ti具有更强的化学亲和力,Si优先与Ti反应生成Ti5Si3相;Ti5Si3相的三维组织形貌为棱柱状,且呈团聚附生特征,粗条状Ti5Si3相具有中心或侧面孔洞缺陷,孔洞的形成主要与其生长机制有关;随着Si含量的增加,钎料的剪切强度呈“升高-降低-升高”的趋势,断口形貌由准解理断裂和解理断裂的混合形态向解理断裂转变;CuSn3Ti5相易破碎开裂成为起裂源,不同粗大状态CuSn3Ti5相的存在均在一定程度上恶化钎料剪切强度。

     

  • 图  1  电弧熔炼钎料铸锭及取样位置示意图

    Figure  1.  Schematic diagram of arc melting filler metal ingot and sampling location

    图  2  Cu-20Sn-10Ti-xSi钎料的显微组织

    Figure  2.  Microstructure of Cu-20Sn-10Ti-xSi brazing filler metal

    图  3  Cu-20Sn-15Ti-xSi钎料的XRD图谱

    Figure  3.  XRD spectrum of Cu-20Sn-15Ti xSi brazing filler metal

    图  4  4#试样典型区域EDS-mapping谱图

    Figure  4.  EDS-mapping spectrum of typical area of sample 4#

    图  5  4#、6#试样中Ti5Si3相的三维形貌

    Figure  5.  Three-dimensional morphology of Ti5Si3 in sample 4#and 6#

    图  6  Si含量分别为0%、2%、5%时液态钎料凝固过程组织演变示意图

    Figure  6.  Schematic diagram of microstructure evolution during solidification of liquid filler metal with Si content of 0wt%, 2wt% and 5wt% respectively

    图  7  Cu-CuSn3Ti5计算等值线截面[20]

    Figure  7.  The calculated isopleth section of Cu-CuSn3Ti5

    图  8  Cu-Sn-Ti-xSi钎料剪切性能

    Figure  8.  Shear properties of the Cu-20Sn-15Ti-xSi filler metals

    图  9  Cu-20Sn-15Ti-xSi钎料断口微观形貌

    Figure  9.  SEM fracture morphology of Cu-20Sn-15Ti-xSi filler metals

    图  10  Cu-20Sn-15Ti-xSi钎料断口微观形貌

    Figure  10.  SEM fracture morphology of Cu-20Sn-15Ti-xSi filler metals

    图  11  Si 0.5%钎料局部断口元素分布能谱图像

    Figure  11.  Energy spectrum image of element distribution at local fracture of Si 0.5% filler metals

    表  1  Cu-20Sn-15Ti-xSi钎料含义成分

    Table  1.   Composition of Cu-20Sn-15Ti-xSi filler metal

    序号 ωCu/% ωSn/% ωTi/% ωSi/%
    1# 65.00 20.00 15.00 -
    2# 64.51 19.99 15.00 0.50
    3# 64.04 19.98 14.98 1.00
    4# 63.01 20.00 14.99 2.00
    5# 61.98 20.00 15.02 3.00
    6# 59.99 20.00 15.01 5.00
    下载: 导出CSV

    表  2  图2中各点能谱分析结果(at%)

    Table  2.   EDS analysis results of each point in Fig.2(at%)

    测试点CuSnTiSi平衡相
    113.4134.4352.17-CuSn3Ti5
    276.718.4214.88-共晶组织
    317.5332.6449.83-CuSn3Ti5
    496.291.062.65-α-Cu(富Ti)
    52.000.7361.1236.15Si3Ti5
    690.796.941.340.93α-Cu(富Sn)
    71.430.5360.8437.20Si3Ti5
    877.6920.600.501.20Cu41Sn11
    91.870.6460.2737.23Si3Ti5
    下载: 导出CSV

    表  3  合金元素系统参数

    Table  3.   Parameters of alloy element systems

    合金系统(Z/rk)A/(Z/rk)B电负性差△x化学亲和力参数η
    Cu-Ti0.1760.40.576
    Sn-Ti0.9560.31.256
    Si-Ti1.6560.31.956
    下载: 导出CSV

    表  4  图9中各点能谱分析结果(at%)

    Table  4.   EDS analysis results of each point in Fig.9(at%)

    测试点CuSnTiSi平衡相
    A13.9933.2552.76-CuSn3Ti5
    B76.988.3314.69-共晶组织
    C6.841.9152.5838.68Si3Ti5
    D69.4622.136.861.55Cu41Sn11
    E12.5131.1250.415.96CuSn3Ti5
    下载: 导出CSV
  • [1] 毛雅梅, 黑鸿君, 高洁, 等. 钎焊金刚石研究进展及其工具的应用 [J]. 机械工程学报,2022,58(4):80-93. doi: 10.3901/JME.2022.04.080

    MAO Yamei, HEI Hongjun, GAO Jie, et al. Research progress of brazed diamond and its tool application [J]. Journal of Mechanical Engineering,2022,58(4):80-93. doi: 10.3901/JME.2022.04.080
    [2] 曹忠溪, 周玉梅, 张凤林, 等. 钎焊金刚石耐磨涂层制备及其磨损性能[J]. 金刚石与磨料磨具工程, 2019, 39(3): 93-101.

    CAO Zhongxi, ZHOU Yumei, ZHANG Fenglin, et al. Preparation and wear performance of brazed diamond wear-resistant coating[J]. Diamond &. Abrasives Engineering, 2019, 39(3): 93-101.
    [3] WANG S Y, XIAO B, XIAO H Z, et al. Microstructure and mechanical properties of the diamond/1045 steel joint brazed using Ni-Cr + Mo composite filler [J]. Diamond & Related Materials,2023,133:109691.
    [4] ZHANG L. Filler metals, brazing processing and reliability for diamond tools brazing: A review [J]. Journal of Manufacturing Processes,2021,66:651-668. doi: 10.1016/j.jmapro.2021.04.015
    [5] 戴秋莲, 徐西鹏, 王永初. 金属结合剂对金刚石把持力的增强措施及增强机制评述 [J]. 材料科学与工程,2002,20(3):465-468.

    DAI Qiulian, XU Xipeng, WANG Yongchu. Review on measures and mechanisms for enhancing the holding force of diamond by metal binders [J]. Journal of Materials Science and Engineering,2002,20(3):465-468.
    [6] 王树义, 肖冰, 肖皓中, 等. 镍基钎料真空钎焊镀钨金刚石的研究[J]. 金刚石与磨料磨具工程, 2023, 43(2): 202-209.

    Dai Q L, Xu X P, Wang Y C. Measures used to improve bonding of diamond to matrix and bonding mechanisms[J]. Materials Science & Engineering, 2002, 20(3): 465-468.
    [7] 杨沁, 凌景亮, 崔长彩, 等. 高频感应钎焊金刚石磨粒剪切失效的试验研究[J]. 金刚石与磨料磨具工程, 2019, 39(5): 85-91.

    YANG Qin, LING Jingliang, CUI Changcai, et al. Experimental study on shear failure of diamond abrasive particles in high-frequency induction brazing[J]. Diamond &. Abrasives Engineering, 2019, 39(5): 85-91.
    [8] 龙伟民, 郝庆乐, 傅玉灿, 等. 金刚石工具钎焊用连接材料研究进展[J]. 材料导报, 2020, 34(23): 23138-23144.

    LONG Weimin, HAO Qingle, FU Yucan, et al. Research progress of connection materials for brazing diamond tools[J]. Materials Review, 2020, 34(23): 23138-23144.
    [9] 卢金斌, 贺亚勋, 张旺玺. 等. CuSnTiNi钎料真空钎焊金刚石 [J]. 焊接学报,2017,38(6):125-128.

    LU Jinbin, HE Yaxun, ZHANG Wangxi, et al. Analysis on vacuum brazing diamond using CuSnTiNi [J]. Transactions of the China Welding Institution,2017,38(6):125-128.
    [10] 高先哲, 肖冰, 管海军, 等. Cu-Sn-Ti钎料的改性设计及性能分析[J]. 金刚石与磨料磨具工程, 2018, 38(1): 32-36.

    GAO Xianzhe, XIAO Bing, GUAN Haijun, et al. Modification design and performance analysis of Cu-Sn-Ti solder[J]. Diamond &. Abrasives Engineering, 2018, 38(1): 32-36.
    [11] CUI B, ZHAO W X, ZUO R Z, et al. Effect of rare earth alloy addition on the microstructure and abrasion resistance of brazed diamonds with Cu-Sn-Ti filler metal[J]. Diamond & Related Materials, 2022, 126: 109110
    [12] LI H L, CHEN J, CUI B, et al. Effects of Ga on Mechanical Properties and Microstructure of Cu-Sn-Ti Filler [J]. Advanced Science News,2022,219(2):2100203.
    [13] CUI B, YAN P P, ZHAO W X, et al. Influence of Ge content on the interfacial characteristics and wear resistance of brazed synthetic diamond grains of Cu-based composite filler [J]. Welding in the World,2022,66(10):1975-1987. doi: 10.1007/s40194-022-01328-y
    [14] CUI B, LIU Z W, ZUO R Z, et al. Microstructure and mechanical properties of vacuum brazed diamond abrasive segments with zirconium carbide reinforced Cu-based active filler metals [J]. Diamond & Related Materials,2022,126:109091.
    [15] CUI B, ZHAO W X, ZUO R Z, et al. The abrasion resistance of brazed diamond using Cu-Sn-Ti composite alloys reinforced with boron carbide [J]. Diamond and Related Materials,2022,124:108926. doi: 10.1016/j.diamond.2022.108926
    [16] DUAN D Z, HAN F, DING J J, et al. Microstructure and performance of brazed diamonds with multilayer graphene-modified Cu-Sn-Ti solder alloys [J]. Ceramics International,2021,47(16):22854-22863. doi: 10.1016/j.ceramint.2021.04.304
    [17] 张克从, 张乐潓. 晶体生长科学与技术[M]. 北京: 科学出版社, 1981.

    ZHANG Kecong, ZHANG Lehui. Crystal growth science and technology[M]. Beijing: Science Press, 1981.
    [18] 胡汉起. 金属凝固原理[M]. 北京: 机械工业出版社, 2000.

    HU Hanqi. Metal solidification principle[M]. Beijing: Mechanical Industry Press, 2000.
    [19] NAKA M, SCHUSTER J C , NAKADE I, et al. Determination of the liquidus of the ternary system Cu-Sn-Ti[J]. Journal of Phase Equilibria, 2001, 22(3): 352-356.
    [20] WANG J, LIU C L, LEINENBACH C. Experimental investigation and thermodynamic assessment of the Cu-Sn-Ti ternary system [J]. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry,2011,35:82-94. doi: 10.1016/j.calphad.2010.12.006
    [21] 陈念贻. 键参数函数及其应用(一)金属键的形成条件 [J]. 中国科学,1974(6):580-584.
    [22] CHEN N Y. Bond parameter functions and their applications (一)—the formation conditions of metal bonds [J]. Science China,1974(6):580-584.
    [23] 孙茂才. 金属力学性能[M]. 哈尔滨: 哈尔滨工业出版社, 2005.

    SUN Maocai. Mechanical properties of metals [M]. Harbin: Harbin Industrial Press, 2005.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  23
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-29
  • 修回日期:  2023-11-05
  • 录用日期:  2023-11-20
  • 网络出版日期:  2024-06-28
  • 刊出日期:  2024-06-28

目录

    /

    返回文章
    返回