CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光选区熔化成形金刚石复合材料特征几何结构的工艺约束研究

谢志平 何艺强 徐仰立 黄国钦 魏金权

谢志平, 何艺强, 徐仰立, 黄国钦, 魏金权. 激光选区熔化成形金刚石复合材料特征几何结构的工艺约束研究[J]. 金刚石与磨料磨具工程, 2024, 44(3): 297-303. doi: 10.13394/j.cnki.jgszz.2023.0171
引用本文: 谢志平, 何艺强, 徐仰立, 黄国钦, 魏金权. 激光选区熔化成形金刚石复合材料特征几何结构的工艺约束研究[J]. 金刚石与磨料磨具工程, 2024, 44(3): 297-303. doi: 10.13394/j.cnki.jgszz.2023.0171
XIE Zhiping, HE Yiqiang, XU Yangli, HUANG Guoqin, WEI Jinquan. Study on manufacturing process constraint of feature structures of diamond composite materials fabricated by selective laser melting[J]. Diamond & Abrasives Engineering, 2024, 44(3): 297-303. doi: 10.13394/j.cnki.jgszz.2023.0171
Citation: XIE Zhiping, HE Yiqiang, XU Yangli, HUANG Guoqin, WEI Jinquan. Study on manufacturing process constraint of feature structures of diamond composite materials fabricated by selective laser melting[J]. Diamond & Abrasives Engineering, 2024, 44(3): 297-303. doi: 10.13394/j.cnki.jgszz.2023.0171

激光选区熔化成形金刚石复合材料特征几何结构的工艺约束研究

doi: 10.13394/j.cnki.jgszz.2023.0171
基金项目: 国家重点研发计划(2021YFB3701800); 国家自然科学基金(52105445)。
详细信息
    作者简介:

    徐仰立,男,1991年生,博士、讲师。主要研究方向:激光增材制造金刚石工具。E-mail: ylxu@hqu.edu.cn

  • 中图分类号: TG164;TG74;TG66

Study on manufacturing process constraint of feature structures of diamond composite materials fabricated by selective laser melting

  • 摘要: 多孔金刚石磨具是一种能在磨削加工过程中提供容屑和冷却液流通空间的新型工具,激光选区熔化(selective laser melting,SLM)成形技术是制造多孔金刚石磨具的有效手段。受激光增材制造的光斑尺寸约束、逐层成形等技术特征的影响,所设计的多孔金刚石磨具难以精准成形,因此有必要对金刚石复合材料特征几何结构的可成形性进行研究。基于SLM125HL设备,以CuSn20/金刚石复合材料为研究对象,采用SLM成形技术成形了不同成形方向、不同尺寸的悬垂结构、薄壁、圆孔和尖角等特征几何结构,并对其可成形性、成形误差及产生原因进行分析。结果表明:金刚石复合材料悬垂结构的最佳可成形尺寸为1.00~2.00 mm,薄壁结构的最小可成形尺寸为0.70 mm;垂直于成形方向的圆孔结构的最小可成形直径尺寸为0.50 mm,平行于成形方向的圆孔结构的最佳成形直径尺寸为1.00~4.00 mm;尖角结构的可成形角度需>10°。这些特征几何结构的成形误差主要受激光对复合粉末的热吸附、激光光斑热影响区扩散以及复合粉末的弱支撑等作用影响。

     

  • 图  1  特征几何结构模型构建

    Figure  1.  Construction of feature geometric structure model

    图  2  悬垂方孔结构的CAD模型与SLM成形结果(Z轴为成形方向)

    Figure  2.  The CAD models and SLM building results of square hole structures (Z axle is the building direction)

    图  3  悬垂方孔弧面缺陷形成原理

    Figure  3.  The formation principle of curved surface defect of overhanging square hole

    图  4  薄壁结构的CAD模型与SLM成形结果

    Figure  4.  The CAD models and SLM building results of thin wall structures

    图  5  薄壁厚度误差形成原理

    Figure  5.  The thickness error formation principle of thin wall structures

    图  6  垂直于成形方向圆孔结构的CAD模型与SLM成形结果

    Figure  6.  The CAD models and SLM building results of hole structures perpendicular to the building direction

    图  7  平行于成形方向圆孔结构的CAD模型与SLM成形结果

    Figure  7.  The CAD models and SLM building results of hole structures parallel to the building direction

    图  8  圆孔直径误差形成原理

    Figure  8.  The diameter error formation principle of hole structures

    图  9  尖角结构的CAD模型与SLM成形结果

    Figure  9.  The CAD models and SLM building results of sharp angle structures

    图  10  尖角结构缺陷形成原理

    Figure  10.  The defects formation principle of sharp angle structures

    表  1  实验材料属性

    Table  1.   Properties of materials

    材料 主要成分 平均粒径 / μm
    金刚石 C 40~50
    CuSn20合金 Cu,Sn 17~53
    下载: 导出CSV

    表  2  特征几何结构成形工艺参数

    Table  2.   SLM parameters of feature geometric structures

    参数名称数值
    激光功率 / W200
    扫描速度 / (mm·s−1)1 600
    层厚 / μm40
    扫描间距 / mm0.12
    光斑直径 / μm80
    下载: 导出CSV

    表  3  悬垂方孔结构边长尺寸测量

    Table  3.   Side length measurements of square hole structures

    设计边长 / mm 水平边长 / mm 相对误差 / % 竖直边长 / mm 相对误差 / %
    0.50
    1.00 1.01 1.00 0.89 −11.00
    2.00 2.02 1.00 1.71 −14.50
    3.00 2.98 −0.67 2.83 −5.67
    4.00 4.15 3.75 3.72 −7.00
    5.00 5.00 0.00 4.54 −9.20
    6.00 6.05 0.83 5.54 −7.67
    7.00 7.05 0.71 6.37 −9.00
    8.00 7.99 −0.13 7.42 −7.25
    下载: 导出CSV

    表  4  薄壁结构厚度尺寸测量

    Table  4.   Thickness measurements of square hole structures

    设计厚度 / mm成形厚度 / mm相对误差 / %
    0.50
    0.60
    0.700.68−2.86
    0.800.811.25
    0.900.911.11
    1.001.022.00
    1.101.110.91
    1.201.210.83
    1.301.300
    1.401.410.71
    下载: 导出CSV

    表  5  垂直于成形方向圆孔结构直径尺寸测量

    Table  5.   Diameter measurements of hole structures perpendicular to the building direction

    设计直径 / mm成形直径 / mm相对误差 / %
    0.500.46−8.00
    0.600.55−8.33
    0.700.69−1.43
    0.800.74−7.5
    0.900.83−7.78
    1.000.95−5.00
    1.101.04−5.45
    1.200.14−6.92
    1.301.21−4.62
    1.401.37−2.14
    1.501.46−2.67
    下载: 导出CSV

    表  6  平行于成形方向圆孔结构直径尺寸测量

    Table  6.   Diameter measurements of hole structures parallel to the building direction

    设计直径 / mm 成形直径 / mm 相对误差 / %
    0.50
    1.00 0.94 −6.00
    2.00 2.01 0.50
    3.00 2.98 −0.67
    4.00 3.97 −0.75
    5.00 4.97 −0.60
    6.00 5.97 −0.50
    7.00 6.98 −0.29
    8.00 7.95 −0.63
    下载: 导出CSV

    表  7  尖角结构的角度测量

    Table  7.   Angle measurements of sharp angle structures

    设计角度 / (°) 成形角度 / (°) 相对误差 / %
    2.0
    5.0
    10.0 9.8 −2.0
    15.0 15.5 3.3
    20.0 20.1 0.5
    30.0 31.0 3.3
    下载: 导出CSV
  • [1] 轩闯, 向刚强, 廖燕玲, 等. 半导体加工用金刚石工具现状 [J]. 超硬材料工程,2021,33(1):41-49. doi: 10.3969/j.issn.1673-1433.2021.01.008

    XUAN Chuang, XIANG Gangqiang, LIAO Yanling, et al. Current status of diamond tools for semiconductor processing industry [J]. Superhard Material Engineering,2021,33(1):41-49. doi: 10.3969/j.issn.1673-1433.2021.01.008
    [2] 吴燕平, 燕青芝. 金属结合剂金刚石工具研究进展 [J]. 金刚石与磨料磨具工程,2019,39(2):37-45.

    WU Yanping, YAN Qingzhi. Research progress of metal bond diamond tools [J]. Diamond & Abrasives Engineering,2019,39(2):37-45.
    [3] XU H, LIAO C J, WENG Q M. Experimental study on porous metal bonded diamond grinding wheels - the selection of porosity inducers and agglomeration’s parameter [J]. Advanced Materials Research,2011(415/416/417):594-597.
    [4] LIU Z, LIAO X, FU W, et al. Microstructures and bonding strength of synthetic diamond brazed by near-eutectic Ag–Cu–in–Ti filler alloy [J]. Materials Science and Engineering: A,2020(790):139711.
    [5] 吴颖. 电镀金刚石工具的应用现状及改进研究 [J]. 热加工工艺,2015,44(18):18-21.

    WU Ying. Application status and improved research of electroplated diamond tools [J]. Hot Working Technology,2015,44(18):18-21.
    [6] YUAN L, GU D, LIN K, et al. Electrically actuated shape recovery of NiTi components processed by laser powder bed fusion after regulating the dimensional accuracy and phase transformation behavior [J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers,2022,1(4):100056. doi: 10.1016/j.cjmeam.2022.100056
    [7] 王建宇, 黄国钦. 金刚石磨粒工具增材制造技术现状及展望 [J]. 金刚石与磨料磨具工程,2022,42(3):307-316.

    WANG Jianyu, HUANG Guoqin. Status and prospect of additive manufacturing technology for diamond abrasive tools [J]. Diamond and Abrasive Engineering,2022,42(3):307-316.
    [8] TIAN C, LI X, ZHANG S, et al. Porous structure design and fabrication of metal-bonded diamond grinding wheel based on selective laser melting (SLM) [J]. International Journal of Advanced Manufacturing Technology,2019,100(5/6/7/8):1451-1462.
    [9] MA Q, PENG Y, CHEN Y, et al. Quantitative investigation of thermal evolution and graphitisation of diamond abrasives in powder bed fusion-laser beam of metal-matrix diamond composites [J]. Virtual and Physical Prototyping,2023,18(1):e2121224. doi: 10.1080/17452759.2022.2121224
    [10] TIAN C, LI X, ZHANG S, et al. Study on design and performance of metal-bonded diamond grinding wheels fabricated by selective laser melting (SLM) [J]. Materials & Design,2018(156):52-61.
    [11] LI X, WANG C, TIAN C, et al. Digital design and performance evaluation of porous metal-bonded grinding wheels based on minimal surface and 3D printing [J]. Materials & Design,2021(203):109556.
    [12] PENG Y, REN J, JIA C, et al. Structural design and mechanical properties of porous structured diamond abrasive tool by selective laser melting [J]. Ceramics International,2023,49(4):6508-6521. doi: 10.1016/j.ceramint.2022.10.136
    [13] TIAN C, LI X, LI H, et al. The effect of porosity on the mechanical property of metal-bonded diamond grinding wheel fabricated by selective laser melting (SLM) [J]. Materials Science and Engineering: A,2019(743):697-706.
    [14] GAN J, GAO H, WEN S, et al. Simulation, forming process and mechanical property of Cu-Sn-Ti/diamond composites fabricated by selective laser melting [J]. International Journal of Refractory Metals and Hard Materials,2020(87):105144.
    [15] LIN K, YUAN L, GU D. Influence of laser parameters and complex structural features on the bio-inspired complex thin-wall structures fabricated by selective laser melting [J]. Journal of Materials Processing Technology,2019(267):34-43.
    [16] WANG D, MAI S, XIAO D, et al. Surface quality of the curved overhanging structure manufactured from 316-L stainless steel by SLM [J]. International Journal of Advanced Manufacturing Technology,2016,86(1/2/3/4):781-792.
    [17] GU D D, MEINERS W, WISSENBACH K. Laser additive manufacturing of metallic components: materials, processes and mechanisms [J]. International Materials Reviews,2012,57(3):133-164. doi: 10.1179/1743280411Y.0000000014
    [18] CHEN H Y, GU D D, XIONG J P, et al. Improving additive manufacturing processability of hard-to-process overhanging structure by selective laser melting [J]. Journal of Materials Processing Technology,2017(250):99-108.
    [19] 徐仰立, 曹玄扬, 李婷婷, 等. 激光增材制造Ti6Al4V点阵结构的抗压吸能特性 [J]. 稀有金属材料与工程,2022,51(7):2536-2544.

    XU Yangli, CAO Xuanyang, LI Tingting, et al. Compressive energy absorption characteristics of Ti6Al4V lattice structure manufactured by laser additive manufacturing [J]. Rare Metal Materials and Engineering,2022,51(7):2536-2544.
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  512
  • HTML全文浏览量:  200
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-25
  • 修回日期:  2023-09-19
  • 录用日期:  2023-10-08
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2024-06-28

目录

    /

    返回文章
    返回